

PBADet: A One-Stage Anchor-Free Approach for Part-Body Association

Zhongpai Gao¹, Huayi Zhou², Abhishek Sharma¹, Meng Zheng¹, Benjamin Planche¹, Terrence Chen¹, Ziyan Wu¹

¹United Imaging Intelligence, Burlington, MA 01803, USA ²Shanghai Jiao Tong University, Shanghai 200240, China

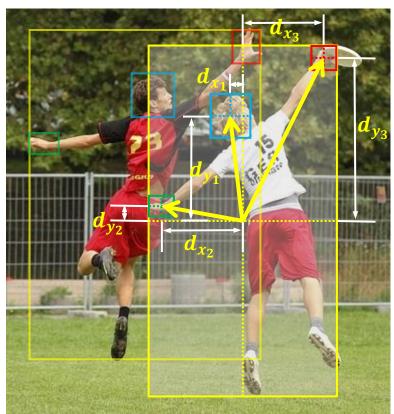
UNITED IMAGING Intelligence

Motivation

- Problem: detecting human parts and associating them with the correct individual.
- **Application:** complex scenarios involving hand gestures from multiple people (*e.g.,* gesture from whom?).

Existing methods often involve two-stage processes

- Detect hands and human body pose, then using heuristic strategies to match [1]
- Detect hands and bodies, then utilizing association network to predict [2]



- [1] Huayi Zhou, Fei Jiang, and Ruimin Shen. Who are raising their hands? hand-raiser seeking based on object detection and pose estimation. ACML 2018
- [2] Supreeth Narasimhaswamy, Thanh Nguyen, Mingzhen Huang, and Minh Hoai. Whose hands are these? hand detection and hand-body association in the wild. CVPR 2022

Motivation – Comparison with BPJDet

- BPJDet: anchor-based and body-to-part association on body objects [3]
- PBADet (ours): anchor-free and part-to-body association on part objects

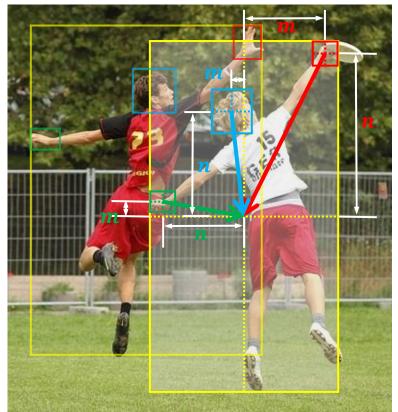
Body-to-Part Association

(BPJDet)

Human Body Object

 $O^{b} = (1, b_{x}^{b}, b_{y}^{b}, b_{w}^{b}, b_{h}^{b}, 1,0,0,0, d_{x_{1}}^{b}, d_{y_{1}}^{b}, d_{x_{2}}^{b}, d_{y_{2}}^{b}, d_{x_{3}}^{b}, d_{y_{3}}^{b})$

Body Part Object


 $\mathcal{O}^{p} = (1, b_{x}^{p}, b_{y}^{p}, b_{w}^{p}, b_{h}^{p}, 0, 1, 0, 0, \\
-, -, -, -, -, -, -) \longrightarrow head \\
\mathcal{O}^{p} = (1, b_{x}^{p}, b_{y}^{p}, b_{w}^{p}, b_{h}^{p}, 0, 0, 1, 0, \\
-, -, -, -, -, -) \longrightarrow left hand \\
\mathcal{O}^{p} = (1, b_{x}^{p}, b_{y}^{p}, b_{w}^{p}, b_{h}^{p}, 0, 0, 0, 1, \\
-, -, -, -, -, -, -) \longrightarrow right hand$

No Object

 $O^0 = (0, -, -, -, -, 0, 0, 0, 0, 0, -, -, -, -, -, -)$

Representation Length:

6+K+2K (K= # of Parts)

Part-to-Body Association (Our proposed **PBADet**)

Human Body Object

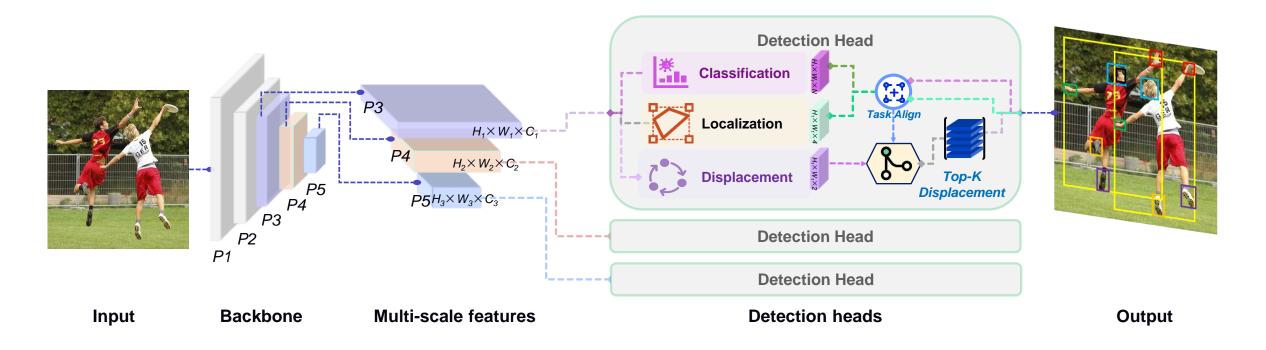
 $O^{b} = (b_{l}^{b}, b_{t}^{b}, b_{r}^{b}, b_{b}^{b}, 1,0,0,0,-,-)$

Body Part Object

 $\mathcal{O}^{p} = (b_{l}^{p}, b_{t}^{p}, b_{r}^{p}, b_{b}^{p}, \\ 0,1,0,0,m,n) \longrightarrow head$ $\mathcal{O}^{p} = (b_{l}^{p}, b_{t}^{p}, b_{r}^{p}, b_{b}^{p}, \\ 0,0,1,0,m,n) \longrightarrow left \ hand$ $\mathcal{O}^{p} = (b_{l}^{p}, b_{t}^{p}, b_{r}^{p}, b_{b}^{p}, \\ 0,0,0,1,m,n) \longrightarrow right \ hand$

No Object

 $\mathcal{O}^0 = (-, -, -, -, -, 0, 0, 0, 0, 0, -, -)$


Representation Length:

5+K+2 (k= # of Parts)

[3] Huayi Zhou, Fei Jiang, and Hongtao Lu. *Body-part joint detection and association via extended object representation*. ICME 2023

Method – Pipeline

UNITED IMAGING Intelligence

Method – Definition

Part-to-body Association Definition

We predict the part-to-body center offset (m_i, n_i) in multi-scale satisfying:

$$\left[\frac{c_x^b}{s_i}\right] = x_i + \lambda m_i, \qquad \left|\frac{c_y^b}{s_i}\right| = y_i + \lambda n_i,$$

with s_i stride at i^{th} feature layer, (x_i, y_i) feature point coordinates, c^b is the center of the body, and λ scaling factor of the center offset to control the NN output range.

Decoding Part-to-body Associations

The anticipated body center is computed as:

$$\hat{c}_x^b = s_i(x_i + \lambda m_i), \qquad \hat{c}_y^b = s_i(y_i + \lambda n_i).$$

The Euclidean (ℓ_2) distance is used to determine the association.

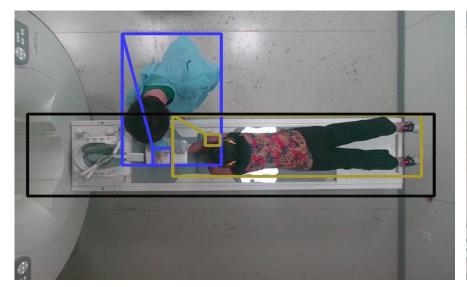
Results – BodyHands

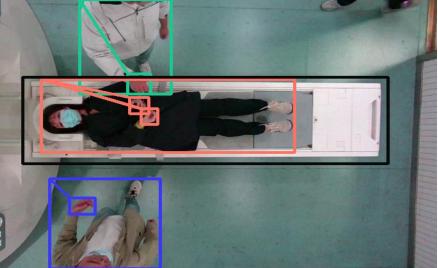
Methods	Param (M)	Size	Hand AP↑	Cond. Accuracy↑	Joint AP↑
OpenPose (2017)	199.0	1536	39.7	74.03	27.81
Keypoint Com. (2021)	27.3	1536	33.6	71.48	20.71
MaskRCNN+FD (2017)	266.0	1536	84.8	41.38	23.16
MaskRCNN+FS (2017)	266.0	1536	84.8	39.12	23.30
MaskRCNN+LD (2017)	266.0	1536	84.8	72.83	50.42
MaskRCNN+IoU (2017)	266.0	1536	84.8	74.52	51.74
BodyHands (2022)	700.3	1536	84.8	83.44	63.48
BodyHands* (2022)	700.3	1536	84.8	84.12	63.87
BPJDet (YOLOv5s6) (2023a)	15.3	1536	84.0	85.68	77.86
BPJDet (YOLOv5m6) (2023a)	41.2	1536	85.3	86.80	78.13
BPJDet (YOLOv5l6) (2023a)	86.1	1536	85.9	86.91	84.39
Ours (YOLOv7)	36.9	1024	89.1	92.62	85.98
Ours (YOLOv516)	86.1	1024	88.1	92.71	85.73

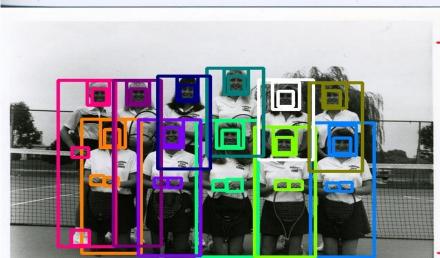
UNITED IMAGING Intelligence

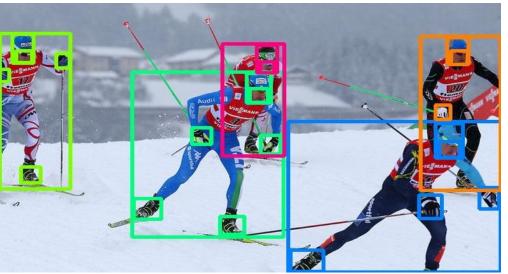
Results – BodyHands

Results – Ablation Study


Methods	Hand AP↑	Cond. Accuracy↑	Joint AP↑
w/o \mathcal{L}_{assoc} (baseline)	89.1	80.78	78.07
w/o Multi-scale	88.8	91.64	85.46
w/o Task-align	89.0	92.08	85.78
Full	89.1	92.62	85.98


Methods	Param (M)	Size I	Hand AP↑	Cond. Accuracy↑	Joint AP↑
BPJDet (anchor-based body-to-part)		1536 1024	85.3	86.80	78.13 85.28
Ours (anchor-based part-to-body) Ours (anchor-free part-to-body)	36.9 36.9	1024	88.4 89.1	92.31 92.62	85.28 85.98





Results – More Qualitative Examples

