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Problem

Goal: find a Deep Neural Network (DNN) with good performance and low cost of
inference in floating-point operations (FLOPs)

H;in Z error(f(x),y) s.t. cost(f) < B,
z,y~D

where f is a Deep Neural Network with L layers.

3/13



Problem

Goal: find a Deep Neural Network (DNN) with good performance and low cost of
inference in floating-point operations (FLOPs)

min Z error(f(x),y) s.t. cost(f) < B,
! z,y~D
where f is a Deep Neural Network with L layers.

Use structured matrices for linear layers Wz to satisfy cost(f) < B.

® cost( Wstructured®) < cost( Wyense )
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Optimal Layer-wise Structure Format for Better Accuracy-Efficiency Trade-off?
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Challenges

Challenge 1. Discrete Exponential Search Space

® Search space size exponential to the number of weights.
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Challenges

Challenge 1. Discrete Exponential Search Space
® Search space size exponential to the number of weights.
Challenge 2. Lack of Structured Matrix Format

® Structured matrices are hand-designed from human insight.

Solution: Differentiable Learning Approach

Generalize, Parameterize, then Optimize Structure by Gradient Descent!

i
Gaudi-GBLR Matrix

5/13



Generalized Block Low-Rank (GBLR) Matrix
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Generalized Block Low-Rank (GBLR) Matrix
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Block by Mask
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Differentiable Mask

Position of a Block = Two Gaussian-Dirichlet (Gaudi) Masks

1.0+ —— Boxcar
Gaudi, 0 = 1.0

0.8 1 Gaudi, 0 = 2.0

— Gaudi, 0 =5.0
0.6 - Gaudi, 0 = 10.0
0.4 A
0.2 A
0.0 A

e A Gaudi mask is fully differentiable with respect to the width and the starting point
of the non-zero elements.
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Gaudi-GBLR Matrix

A GBLR matrix with Gaudi masks m? ; ..., m? o o.:
(w4 w' k)

cost(W9z) < sum of the widths of the masks.
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Training Efficient DNN by Gaudi-GBLR Weights

1. Replace weights of a DNN f to Gaudi-GBLR matrices.

2. Penalize the sum of the width of the Gaudi masks during the training at each
gradient descent step.
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Learned Block Layout
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Learned Block Layout of ViT-Base on ImageNet
The brighter, the more overlaps among blocks.
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Vision Tasks

¢ ImageNet Classification (1,000 classes)

® Replace weights of ViT-Base to Gaudi-GBLR matrices and fine-tune.

® Better accuracy-efficiency trade-off than fixed structured matrices.

ImageNet Validation Accuracy (%)

ViT-B Finetuned

7 | [ Dense
Jg Low Rank
74 4 S —e- Monarch (BLR)
-k Gaudi-GBLR (Ours)
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Relative FLOPs
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Language Task

® Language Generation-WikiText103

® Better performance while using fewer computations.

Perplexity by weight type of GPT-2 after fine-tuning on WikiText103.

Weight Type | Perplexity ({) | Relative FLOPs
Dense 19.36 100%
Low Rank 19.48 43.75%
Monarch 20.56 43.75%
Gaudi-GBLR 19.24 43.7%
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Thank you!

Visit us at our poster on
Wed 8 May 10:45 a.m.-12:45 p.m. CEST
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