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Problem

Goal: find a Deep Neural Network (DNN) with good performance and low cost of
inference in floating-point operations (FLOPs)

min
f

∑
x,y∼D

error(f (x),y) s.t. cost(f ) ≤ B,

where f is a Deep Neural Network with L layers.

Use structured matrices for linear layers Wx to satisfy cost(f ) ≤ B.

• cost(Wstructuredx) � cost(Wdensex)
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Challenges

Challenge 1. Discrete Exponential Search Space

• Search space size exponential to the number of weights.

Challenge 2. Lack of Structured Matrix Format

• Structured matrices are hand-designed from human insight.

Solution: Differentiable Learning Approach
Generalize, Parameterize, then Optimize Structure by Gradient Descent!

↓
Gaudi-GBLR Matrix
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Generalized Block Low-Rank (GBLR) Matrix
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Block by Mask
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Differentiable Mask

Position of a Block = Two Gaussian-Dirichlet (Gaudi) Masks
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• A Gaudi mask is fully differentiable with respect to the width and the starting point
of the non-zero elements.
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Gaudi-GBLR Matrix

A GBLR matrix with Gaudi masks m̃σ
(wR

k ,lR
k )
, m̃σ

(wC
k ,lC

k )
:

W θ =
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cost(W θx) ∝ sum of the widths of the masks.
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Training Efficient DNN by Gaudi-GBLR Weights

1. Replace weights of a DNN f to Gaudi-GBLR matrices.

2. Penalize the sum of the width of the Gaudi masks during the training at each
gradient descent step.
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1Learned Block Layout of ViT-Base on ImageNet
The brighter, the more overlaps among blocks.
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Vision Tasks
• ImageNet Classification (1,000 classes)

• Replace weights of ViT-Base to Gaudi-GBLR matrices and fine-tune.

• Better accuracy-efficiency trade-off than fixed structured matrices.
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Language Task

• Language Generation-WikiText103

• Better performance while using fewer computations.

Perplexity by weight type of GPT-2 after fine-tuning on WikiText103.

Weight Type Perplexity (↓) Relative FLOPs
Dense 19.36 100%
Low Rank 19.48 43.75%
Monarch 20.56 43.75%
Gaudi-GBLR 19.24 43.7%
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Thank you!

Visit us at our poster on
Wed 8 May 10:45 a.m.-12:45 p.m. CEST

Paper

Code


	Background
	Problem
	Method

