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ICU Data: complex, sparse, error-prone

ICU data is a large collection of sparse and irregularly sampled events (e.g., lab tests).

Information is frequently encoded using local, non-standard terminologies.

Medical concepts of interest (e.g., sepsis) are not directly recorded but need to be

retrospectively derived from these events.

Exclamation-Triangle ICU data is often processed and analyzed in different, non-reproducible ways. Exclamation-Triangle
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Figure 1. Schematic timeline overview of ICU data for a single patient.

Why yet another ICU benchmark?

Despite efforts for standardization, there remain substantial variations in definitions of

features and cohorts among studies.

Existing ICU benchmarks are limited to 1-2 datasets with hard-coded tasks that provide

little support for extensibility and cross-dataset comparisons (1; 2).

Hand-point-right YAIB provides a modular framework for multi-dataset ICU prediction.

Table 1. Supplemental details of openly accessible ICU datasets. Accessing each dataset requires completing a credentialing procedure,

although smaller demo versions are available for MIMIC and eICU (number of demo stays shown in parentheses).

Dataset MIMIC-III / IV eICU CRD HiRID AUMCdb Your dataset

Stays 40k (0.1k)/ 73k 201k (2k) 34k 23k

Frequency (time) 1 hour 5 minutes 2 / 5 minutes up to 1 minute

Origin USA USA Switzerland Netherlands

Published 2015 2017 2020 2019

Benchmarks 3 1 1 0

Tasks
Classification: Mortality, Acute Kidney Injury, Sepsis

Your tasks
Regression: Kidney Function, Length of Stay

Design philosophy: reproducibility and extensibility first

Guiding principles:

Medical research is inherently complex.

One size fits all is impossible.

Hardcoded solutions are not reproducible.

Desiderata:

Out-of-the-box support for datasets, tasks, models enabling quick prototyping.

Reproducible modular setup to change only what you need (Configuration as Code).

Full extensibility across experiment lifecycle: dataset, cohorts, preproc, model, metrics.
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Figure 2. Schematic overview of benchmark pipeline. On the left side, the creation of harmonized ICU cohorts is shown. Domain

expertise of clinicians is crucial to define clinically useful tasks. The schematic overview of the benchmark stages can be found on the

right. Note that the dotted line indicates that this component can be easily extended, as it follows an abstracted interface.

Cohort definitions can heavily skew prediction accuracy

Sepsis is a clinically relevant endpoint where early treatment could prevent death.

There are several different sepsis definitions based on clinical values (3).

Hand-point-right Differences in cohort definitions dramatically impact model performance.
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Figure 3. Sepsis prediction on MIMIC-IV for different definitions of sepsis. Left: AUROC, Right: AUPRC.

Important steps for clinical implementation are now easy as pie

External validation — a crucial step in establishing the reliability of a model — is rarely

done because of a lack of multi-center data (4).

Fine-tuning can provide a solution to data shortages when developing a local model.

Hand-point-right In YAIB, external validation and fine-tuning are readily available.
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Figure 4. Left: Performance in AUROC of GRU models predicting ICU mortality when trained on one dataset (rows) and evaluated on

all others (columns). Pooled (d-1) refers to training a model on every dataset except the evaluation dataset. Right: Fine-tuning of a

GRU model for ICU mortality trained on eICU for prediction on HiRID.

Takeaways

Status Quo: studies have their own ad-hoc pipelines with a 1) specific dataset, 2) cohort

definition, and 3) preprocessing pipeline; =⇒ each choice has a major impact on the

results (often more than a SOTA model).

YAIB aids researchers by providing them with ready-to-use datasets, endpoints, and

models; new models can therefore be easily compared and validated.

While most existing benchmarking studies are hard-coded, we utilize flexible,

dataset-independent cohort definitions and configurable preprocessing facilities linked via

a common, shareable syntax.
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