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Background: dimension collapse

2Jing, Li, et al. "Understanding Dimensional Collapse in Contrastive Self-supervised Learning." ICLR. 2022.
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Representation dimension

• Total number of variables of the representation space

• E.g. 3D space of this room



Background: dimension collapse
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Representation dimension

• Total number of variables of the representation space

• E.g. 3D space of this room

Intrinsic dimension

• Minimal number of variable to describe the data

• How many features (variables) are needed to describe where 
everyone is sitting in this room? 



Background: dimension collapse
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Contrastive:

• Sample contrastive: SimCLR, NNCLR, MOCO 

• Asymmetrical model: BYOL, SimSiam

Generative:

• Masked image modeling: MAE Suffer from dimension 
collapse

(Jing, Li, et al. 2022.)
(Zhang, Q., Wang, Y., & Wang, Y. 2022)
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Contrastive:

• Sample contrastive: SimCLR, NNCLR, MOCO 

• Asymmetrical model: BYOL, SimSiam

Generative:

• Masked image modeling: MAE

Alleviate global 
collapse

(Zhuo, Zhijian, et al. 2023)
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Question: no more dimension collapse?

8

In this room:

• How many features are needed to describe your position with the 
person sitting next to you? 



Background: local intrinsic dimensionality 
(LID)

9
Houle, Michael E. "Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications." SISAP 
2017.



Background: local intrinsic dimensionality 
(LID)
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Houle, Michael E. "Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications." SISAP 
2017.

• Space filling capability of the region surrounding an example

• Intrinsic dimensionality of the surroundings neighbors
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Question: no more dimension collapse?
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Local dimension 
collapse!



Question: how to regularize LID?
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• Need a metric to measures the “distance” between LID distributions

• Fisher-Rao metric:



Local Dimensionality Regularization (LDReg)
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Local Dimensionality Regularization (LDReg)
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Make the learned representation away from uniform distance 
distribution (LID = 1)



Experiments
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Representation quality is evaluated with linear probing on frozen encoder 

Dataset: ImageNet-1k

Contrastive:

• Sample contrastive: SimCLR, SimCLR-Tuned

• Asymmetrical model: BYOL

Generative:

• Masked image modeling: MAE



Increases both local and global intrinsic 
dimensions
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Evaluations
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Consistent improvement on existing SSL methods



Evaluations
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Consistent improvement on transfer learning



Evaluations
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Consistent improvement on finetuning tasks



Local collapse triggering complete collapse
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Min LID: using Fisher-Rao metric, making LID lower



Contributions
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• Mitigating dimensional collapse in SSL through LID.

• Theory to support the formulation of LID regularization.

• Consistent empirical improvement on standard SSL evaluations 
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Code available on GitHub
https://github.com/HanxunH/LDReg
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