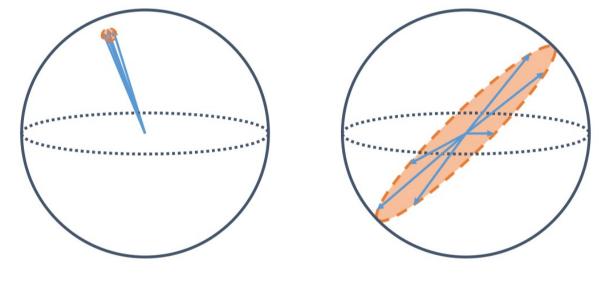


LDReg: Local Dimensionality Regularized Self-Supervised Learning

Hanxun Huang¹, Ricardo JGB Campello², Sarah Erfani¹, Xingjun Ma³, Michael E Houle⁴, James Bailey¹

> ¹The University of Melbourne, Australia ²University of Southern Denmark, Denmark ³Fudan University, China ⁴New Jersey Institute of Technology, USA

To appear in International Conference on Learning Representations (ICLR) 2023



(b) complete collapse (c) dimensional collapse

Jing, Li, et al. "Understanding Dimensional Collapse in Contrastive Self-supervised Learning." ICLR. 2022.

Representation dimension

- Total number of variables of the representation space
- E.g. 3D space of this room

Representation dimension

- Total number of variables of the representation space
- E.g. 3D space of this room

Intrinsic dimension

- Minimal number of variable to describe the data
- How many features (variables) are needed to describe where everyone is sitting in this room?

Contrastive:

- Sample contrastive: SimCLR, NNCLR, MOCO
- Asymmetrical model: BYOL, SimSiam

Generative:

Masked image modeling: MAE

--- Suffer from dimension collapse

(Jing, Li, et al. 2022.) (Zhang, Q., Wang, Y., & Wang, Y. 2022)

Contrastive:

- Sample contrastive: SimCLR, NNCLR, MOCO
- Asymmetrical model: BYOL, SimSiam

Generative:

• Masked image modeling: MAE

Alleviate global collapse (Zhuo, Zhijian, et al. 2023)

Question: no more dimension collapse?

Question: no more dimension collapse?

In this room:

 How many features are needed to describe your position with the person sitting next to you?

Background: local intrinsic dimensionality (LID)

Let F be a real-valued function that is non-zero over some open interval containing $r \in \mathbb{R}$, $r \neq 0$. **Definition 1** ([33]). The intrinsic dimensionality of F at r is defined as follows, whenever the limit exists:

IntrDim_F(r)
$$\triangleq \lim_{\epsilon \to 0} \frac{\ln (F((1+\epsilon)r)/F(r))}{\ln((1+\epsilon)r)/r)}$$

Theorem 1 ([33]). If F is continuously differentiable at r, then

$$\mathrm{ID}_F(r) \triangleq \frac{r \cdot F'(r)}{F(r)} = \mathrm{IntrDim}_F(r).$$

Houle, Michael E. "Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications." SISAP 2017.

Background: local intrinsic dimensionality (LID)

Theorem 2 (LID Representation Theorem [33]). Let $F : \mathbb{R} \to \mathbb{R}$ be a real-valued function, and assume that ID_F^* exists. Let x and w be values for which x/w and F(x)/F(w) are both positive. If F is non-zero and continuously differentiable everywhere in the interval $[\min\{x,w\}, \max\{x,w\}]$, then

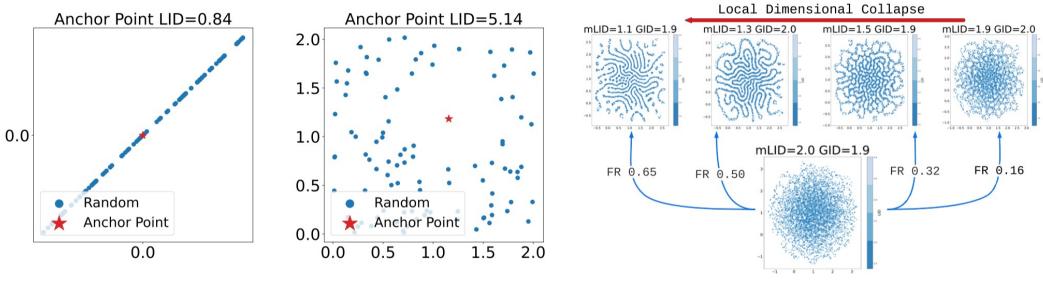
$$\frac{F(x)}{F(w)} = \left(\frac{x}{w}\right)^{\mathrm{ID}_F^*} \cdot A_F(x, w), \quad where \quad A_F(x, w) \triangleq \exp\left(\int_x^w \frac{\mathrm{ID}_F^* - \mathrm{ID}_F(t)}{t} \, \mathrm{d}t\right),$$

whenever the integral exists.

- Space filling capability of the region surrounding an example
- Intrinsic dimensionality of the surroundings neighbors

Houle, Michael E. "Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications." SIŠAP 2017.

Question: no more dimension collapse?

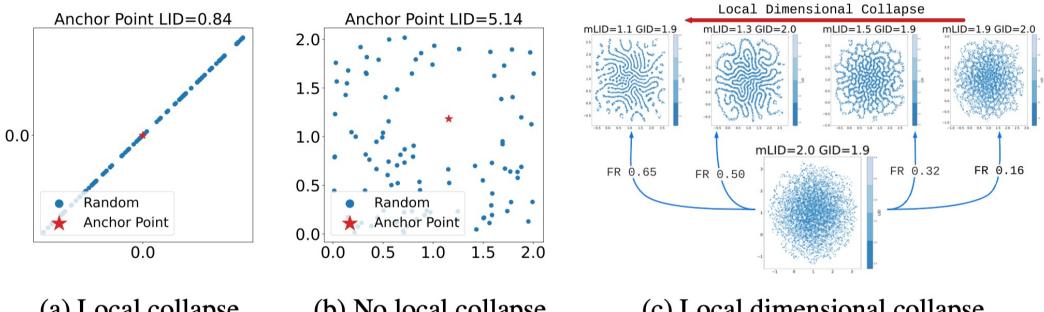


(a) Local collapse

(b) No local collapse

(c) Local dimensional collapse

Question: no more dimension collapse?



(a) Local collapse

(b) No local collapse

(c) Local dimensional collapse

Local dimension collapse!

Question: how to regularize LID?

- Need a metric to measures the "distance" between LID distributions
- Fisher-Rao metric:

$$\mathcal{I}_w(heta) = \int_0^w \left(rac{\partial}{\partial heta} \ln F_w'(x| heta)
ight)^2 F_w'(x| heta) \,\mathrm{d}x\,.$$

Lemma 1. Consider the family of distributions on [0, w] parameterized by θ , whose CDFs are smooth growth functions of the form

$$H_{w|\theta}(x) = \left(\frac{x}{w}\right)^{\theta}.$$

The Fisher-Rao distance d_{FR} between $H_{w|\theta_1}$ and $H_{w|\theta_2}$ is

$$d_{\mathrm{FR}}(H_{w| heta_1},H_{w| heta_2}) = \left|\lnrac{ heta_2}{ heta_1}
ight|\,.$$

1	2
	.5
_	-

Local Dimensionality Regularization (LDReg)

Definition 3. Given two smooth-growth distance distributions with CDFs F and G, their asymptotic Fisher-Rao distance is given by

$$d_{\mathrm{AFR}}(F,G) \triangleq \lim_{w \to 0^+} d_{\mathrm{FR}}(H_{w | \mathrm{ID}_F^*}, H_{w | \mathrm{ID}_G^*}) = \left| \ln \frac{\mathrm{ID}_G^*}{\mathrm{ID}_F^*} \right|.$$

Local Dimensionality Regularization (LDReg)

Our dimensionality L_1 regularization for SSL corresponds to minimizing the negative log of the geometric mean of the ID values (recall Corollary 3.1). We assume that $ID_{F_{in}}^{*}$ is desired to be ≥ 1 .

$$\max \frac{1}{N} \sum_{i}^{N} \lim_{w \to 0} d_{\text{AFR}}(F_w^i(r), U_{1,w}(r)) = \max \frac{1}{N} \sum_{i}^{N} \left| \ln \frac{\text{ID}_{F_w^i}^*}{1} \right| = \min \left(-\frac{1}{N} \sum_{i}^{N} \ln \text{ID}_{F_w^i}^* \right).$$

Make the learned representation away from uniform distance distribution (LID = 1)

Representation quality is evaluated with linear probing on frozen encoder Dataset: ImageNet-1k

Contrastive:

- Sample contrastive: SimCLR, SimCLR-Tuned
- Asymmetrical model: BYOL

Generative:

• Masked image modeling: MAE

Increases both local and global intrinsic dimensions

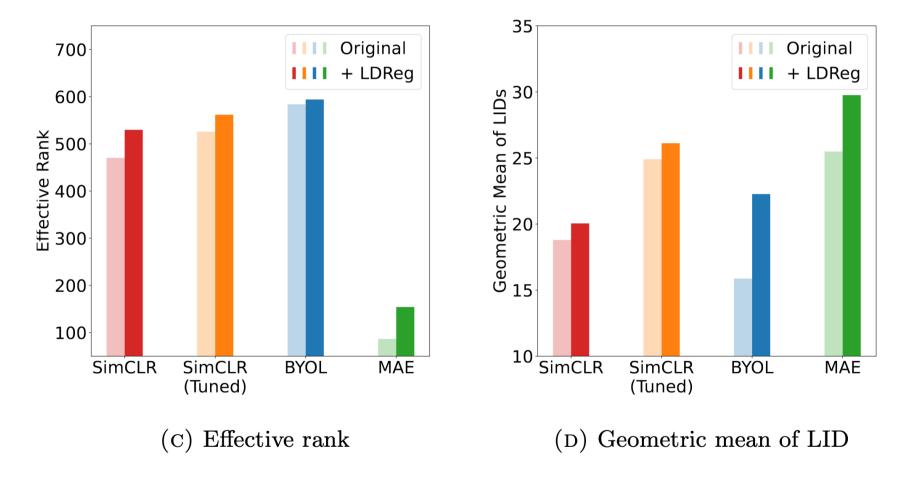


Table 1: The linear evaluation results (accuracy (%)) of different methods with and without LDReg. The effective rank is calculated on the ImageNet validation set. The best results are **boldfaced**.

Model	Epochs	Method	Regularization	Linear Evaluation	Effective Rank
		SimCLR	-	64.3	470.2
		SIIICLK	LDReg	64.8	529.6
ResNet-50	100	SimCLR	-	67.2	525.8
Resinct-50	100	(Tuned)	LDReg	67.5	561.7
		BYOL	-	67.6	583.8
		BIOL	LDReg	68.5	594.0
ViT-B	200	SimCLR	-	72.9	283.7
		SIIICLK	LDReg	73.0	326.1
		MAE	-	57.0	86.4
			LDReg	57.6	154.1

Consistent improvement on existing SSL methods

Table 2: The transfer learning results in terms of linear probing accuracy (%), using ResNet-50 as the encoder. The best results are **boldfaced**.

Method	Regularization	Batch Size	Epochs	ImageNet	Food-101	CIFAR-10	CIFAR-100	Birdsnap	Cars	DTD
	-	2048 100		64.3	69.0	89.1	71.2	32.0	36.7	67.8
SimCLR	LDReg	2048	100	64.8	69.1	89.2	70.6	33.4	37.3	67.7
SHICLK	-	4096	1000	69.0	71.1	90.1	71.6	37.5	35.3	70.7
LDReg	4090	1000	69.8	73.3	91.8	75.1	38.7	41.6	70.8	

Consistent improvement on transfer learning

Table 3: The performance of the pre-trained models (ResNet-50) on object detection and instance segmentation tasks, when fine-tuned on COCO. The bounding-box (AP^{bb}) and mask (AP^{mk}) average precision are reported with the best results are **boldfaced**.

Method	Regularization	Epochs Batch Size		hs Batch Size Object Detection			Segmentation		
Method	Regularization	Lipoens	Datch Size	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	AP ^{mk}	AP_{50}^{mk}	AP_{75}^{mk}
SimCLR	-			35.24	55.05	37.88	31.30	51.70	32.82
SIIICLK	LDReg	100	.00 2048	35.26	55.10	37.78	31.38	51.88	32.90
BYOL	-	100		36.30	55.64	38.82	32.17	52.53	34.30
BIOL	LDReg			36.82	56.47	39.62	32.47	53.15	34.60
SimCLR	-	1000	4096	36.48	56.22	39.28	32.12	52.70	34.02
LDReg	LDReg	1000	4090	37.15	57.20	39.82	32.82	53.8 1	34.74

Consistent improvement on finetuning tasks

THE UNIVERSITY OF MELBOURNE

Local collapse triggering complete collapse

Min LID: using Fisher-Rao metric, making LID lower

$$\min\left(\frac{1}{N}\sum_{i}^{N}\ln\mathrm{LID}_{F_{w}^{i}}^{*}\right)$$

Table 13: Comparing the results of linear evaluations of regularization terms of LDReg, MinLID and baseline. All models are trained on ImageNet for 100 epochs using ResNet-50 as encoder. The results are reported as linear probing accuracy (%) on ImageNet.

Method	Regularization	β	Linear Acc	Effective Rank
	LDReg	0.01	64.8	529.6
	-	-	64.3	470.2
SimCLR	Min LID	0.01	64.2	150.7
SIIICLK	Min LID	0.1	63.1	15.0
	Min LID	1.0	46.4	1.0
	Min LID	10.0	Complete collapse	-

- Mitigating dimensional collapse in SSL through LID.
- Theory to support the formulation of LID regularization.
- Consistent empirical improvement on standard SSL evaluations

[1] Jing, Li, et al. "Understanding Dimensional Collapse in Contrastive Self-supervised Learning." ICLR. 2022.

[2] Zhang, Qi, Yifei Wang, and Yisen Wang. "How mask matters: Towards theoretical understandings of masked autoencoders." NeurIPS. 2022.

[3] Zhuo, Zhijian, et al. "Towards a Unified Theoretical Understanding of Non-contrastive Learning via Rank Differential Mechanism." ICLR. 2023.

[4] Houle, Michael E. "Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications." SISAP 2017.

Code available on GitHub <u>https://github.com/HanxunH/LDReg</u>

Thank you

