LDReg: Local Dimensionality Regularized SelfSupervised Learning

Hanxun Huang¹, Ricardo JGB Campello², Sarah Erfani¹, Xingjun Ma³, Michael E Houle ${ }^{4}$, James Bailey ${ }^{1}$
${ }^{1}$ The University of Melbourne, Australia
${ }^{2}$ University of Southern Denmark, Denmark
${ }^{3}$ Fudan University, China
${ }^{4}$ New Jersey Institute of Technology, USA

To appear in International Conference on Learning Representations (ICLR) 2023

Background: dimension collapse

(b) complete collapse

(c) dimensional collapse

Jing, Li, et al. "Understanding Dimensional Collapse in Contrastive Self-supervised Learning." ICLR. 2022.²

Background: dimension collapse

Representation dimension

- Total number of variables of the representation space
- E.g. 3D space of this room

Background: dimension collapse

Representation dimension

- Total number of variables of the representation space
- E.g. 3D space of this room

Intrinsic dimension

- Minimal number of variable to describe the data
- How many features (variables) are needed to describe where everyone is sitting in this room?

Background: dimension collapse

Contrastive:

- Sample contrastive: SimCLR, NNCLR, MOCO
- Asymmetrical model: BYOL, SimSiam

Generative:

- Masked image modeling: MAE

Background: dimension collapse

Contrastive:

- Sample contrastive: SimCLR, NNCLR, MOCO
- Asymmetrical model: BYOL, SimSiam

Generative:

Alleviate global collapse

(Zhuo, Zhijian, et al. 2023)

- Masked image modeling: MAE

Question: no more dimension collapse?

Question: no more dimension collapse?

In this room:

- How many features are needed to describe your position with the person sitting next to you?

Background: local intrinsic dimensionality (LID)

Let F be a real-valued function that is non-zero over some open interval containing $r \in \mathbb{R}, r \neq 0$.
Definition 1 ([33]). The intrinsic dimensionality of F at r is defined as follows, whenever the limit exists:

$$
\operatorname{IntrDim}_{F}(r) \triangleq \lim _{\epsilon \rightarrow 0} \frac{\ln (F((1+\epsilon) r) / F(r))}{\ln ((1+\epsilon) r) / r)}
$$

Theorem 1 ([33]). If F is continuously differentiable at r, then

$$
\mathrm{ID}_{F}(r) \triangleq \frac{r \cdot F^{\prime}(r)}{F(r)}=\operatorname{IntrDim}_{F}(r)
$$

Houle, Michael E. "Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications." SISÅP 2017.

Background: local intrinsic dimensionality (LID)

Theorem 2 (LID Representation Theorem [33]). Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued function, and assume that ID_{F}^{*} exists. Let x and w be values for which x / w and $F(x) / F(w)$ are both positive. If F is non-zero and continuously differentiable everywhere in the interval $[\min \{x, w\}, \max \{x, w\}]$, then

$$
\frac{F(x)}{F(w)}=\left(\frac{x}{w}\right)^{\mathrm{ID}_{F}^{*}} \cdot A_{F}(x, w), \quad \text { where } \quad A_{F}(x, w) \triangleq \exp \left(\int_{x}^{w} \frac{\mathrm{ID}_{F}^{*}-\mathrm{ID}_{F}(t)}{t} \mathrm{~d} t\right)
$$

whenever the integral exists.

- Space filling capability of the region surrounding an example
- Intrinsic dimensionality of the surroundings neighbors

Houle, Michael E. "Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications." SISAP 2017.

Question: no more dimension collapse?

(a) Local collapse

(b) No local collapse

(c) Local dimensional collapse

Question: no more dimension collapse?

(a) Local collapse

(b) No local collapse

(c) Local dimensional collapse

Local dimension

 collapse!
Question: how to regularize LID?

- Need a metric to measures the "distance" between LID distributions
- Fisher-Rao metric:

$$
\mathcal{I}_{w}(\theta)=\int_{0}^{w}\left(\frac{\partial}{\partial \theta} \ln F_{w}^{\prime}(x \mid \theta)\right)^{2} F_{w}^{\prime}(x \mid \theta) \mathrm{d} x .
$$

Lemma 1. Consider the family of distributions on $[0, w]$ parameterized by θ, whose CDFs are smooth growth functions of the form

$$
H_{w \mid \theta}(x)=\left(\frac{x}{w}\right)^{\theta}
$$

The Fisher-Rao distance d_{FR} between $H_{w \mid \theta_{1}}$ and $H_{w \mid \theta_{2}}$ is

$$
d_{\mathrm{FR}}\left(H_{w \mid \theta_{1}}, H_{w \mid \theta_{2}}\right)=\left|\ln \frac{\theta_{2}}{\theta_{1}}\right|
$$

Local Dimensionality Regularization (LDReg)

Definition 3. Given two smooth-growth distance distributions with CDFs F and G, their asymptotic Fisher-Rao distance is given by

$$
d_{\mathrm{AFR}}(F, G) \triangleq \lim _{w \rightarrow 0^{+}} d_{\mathrm{FR}}\left(H_{w \mid \mathrm{ID}_{F}^{*}}, H_{w \mid \mathrm{ID}_{G}^{*}}\right)=\left|\ln \frac{\mathrm{ID}_{G}^{*}}{\mathrm{DD}_{F}^{*}}\right| .
$$

Local Dimensionality Regularization (LDReg)

Our dimensionality L_{1} regularization for SSL corresponds to minimizing the negative log of the geometric mean of the ID values (recall Corollary 3.1). We assume that $\mathrm{ID}_{F_{w}^{i}}^{*}$ is desired to be ≥ 1.

$$
\max \frac{1}{N} \sum_{i}^{N} \lim _{w \rightarrow 0} d_{\mathrm{AFR}}\left(F_{w}^{i}(r), U_{1, w}(r)\right)=\max \frac{1}{N} \sum_{i}^{N}\left|\ln \frac{\mathrm{ID}_{F_{w}^{i}}^{*}}{1}\right|=\min \left(-\frac{1}{N} \sum_{i}^{N} \ln \mathrm{ID}_{F_{w}^{i}}^{*}\right) .
$$

Make the learned representation away from uniform distance distribution (LID = 1)

Experiments

Representation quality is evaluated with linear probing on frozen encoder
Dataset: ImageNet-1k
Contrastive:

- Sample contrastive: SimCLR, SimCLR-Tuned
- Asymmetrical model: BYOL

Generative:

- Masked image modeling: MAE

Increases both local and global intrinsic dimensions

(c) Effective rank

(D) Geometric mean of LID

Evaluations

Table 1: The linear evaluation results (accuracy (\%)) of different methods with and without LDReg. The effective rank is calculated on the ImageNet validation set. The best results are boldfaced.

Model	Epochs	Method	Regularization	Linear Evaluation	Effective Rank
ResNet-50	100	SimCLR		64.3	470.2
		SimCLR	LDReg	64.8	529.6
		SimCLR	-	67.2	525.8
		(Tuned)	LDReg	67.5	561.7
			-	67.6	583.8
		BYOL	LDReg	68.5	594.0
ViT-B	200	SimCLR	-	72.9	283.7
		SimCLR	LDReg	73.0	326.1
		MAE		57.0	86.4
			LDReg	57.6	154.1

Consistent improvement on existing SSL methods

Evaluations

Table 2: The transfer learning results in terms of linear probing accuracy (\%), using ResNet-50 as the encoder. The best results are boldfaced.

Method	Regularization	Batch Size	Epochs	ImageNet	Food-101	CIFAR-10	CIFAR-100	Birdsnap	Cars	DTD
SimCLR		2048	100	64.3	69.0	89.1	71.2	32.0	36.7	67.8
	LDReg			64.8	69.1	89.2	70.6	33.4	37.3	67.7
	-	4096	1000	69.0	71.1	90.1	71.6	37.5	35.3	70.7
	LDReg			69.8	73.3	91.8	75.1	38.7	41.6	70.8

Consistent improvement on transfer learning

Evaluations

Table 3: The performance of the pre-trained models (ResNet-50) on object detection and instance segmentation tasks, when fine-tuned on COCO. The bounding-box ($\mathrm{AP}^{\mathrm{bb}}$) and mask ($\mathrm{AP}^{\mathrm{mk}}$) average precision are reported with the best results are boldfaced.

Method	Regularization	Epochs	Batch Size	Object Detection			Segmentation		
				$\mathrm{AP}^{\mathrm{bb}}$	$\mathrm{AP}_{50}^{\mathrm{bb}}$	$\mathrm{AP}_{75}^{\mathrm{bb}}$	$\mathrm{AP}^{\mathrm{mk}}$	$\mathrm{AP}_{50}^{\mathrm{mk}}$	$\mathrm{AP}_{75}^{\mathrm{mk}}$
SimCLR	-	100	2048	35.24	55.05	37.88	31.30	51.70	32.82
SimCLR	LDReg			35.26	55.10	37.78	31.38	51.88	32.90
BYOL	LDReg			36.30	55.64	38.82	32.17	52.53	34.30
				36.82	56.47	39.62	32.47	53.15	34.60
SimCLR	-	1000	4096	36.48	56.22	39.28	32.12	52.70	34.02
	LDReg			37.15	57.20	39.82	32.82	53.81	34.74

Consistent improvement on finetuning tasks

Local collapse triggering complete collapse

Min LID: using Fisher-Rao metric, making LID lower

$$
\min \left(\frac{1}{N} \sum_{i}^{N} \ln \operatorname{LID}_{F_{w}^{i}}^{*}\right)
$$

Table 13: Comparing the results of linear evaluations of regularization terms of LDReg, MinLID and baseline. All models are trained on ImageNet for 100 epochs using ResNet-50 as encoder. The results are reported as linear probing accuracy (\%) on ImageNet.

Method	Regularization	β	Linear Acc	Effective Rank
	LDReg	0.01	64.8	529.6
	-	-	64.3	470.2
SimCLR	Min LID	0.01	64.2	150.7
	Min LID	0.1	63.1	15.0
	Min LID	1.0	46.4	1.0
	Min LID	10.0	Complete collapse	-

Contributions

- Mitigating dimensional collapse in SSL through LID.
- Theory to support the formulation of LID regularization.
- Consistent empirical improvement on standard SSL evaluations

Reference

[1] Jing, Li, et al. "Understanding Dimensional Collapse in Contrastive Self-supervised Learning." ICLR. 2022.
[2] Zhang, Qi, Yifei Wang, and Yisen Wang. "How mask matters: Towards theoretical understandings of masked autoencoders." NeurIPS. 2022.
[3] Zhuo, Zhijian, et al. "Towards a Unified Theoretical Understanding of Non-contrastive Learning via Rank Differential Mechanism." ICLR. 2023.
[4] Houle, Michael E. "Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications." SISAP 2017.

Reference

Code available on GitHub https://github.com/HanxunH/LDReg

THE UNIVERSITY OF
MELBOURNE

Thank you

-

