Retrieval is Accurate Generation

Current Mainstream

- How it works?
 - left-to-right, word-by-word

 $\mathbf{X} = (X_1, \dots, X_T)$

$$P(\mathbf{X}) = \prod_{t} P(X_t \mid X_{< t}) = \prod_{t} P(X_t \mid C_t)$$

• select a token from a vocabulary (*fixed, finite, and standalone*)

$$P_{\theta}(x|c) = \frac{\exp \mathbf{h}_{c}^{\top} \mathbf{w}_{x}}{\sum_{x'} \exp \mathbf{h}_{c}^{\top} \mathbf{w}_{x'}}$$

• RNN, CNN and Transformer

 \mathbf{h}_c is a function of c, and \mathbf{w}_x is a function of x $\mathbf{h}_c^{\top} \mathbf{w}_x$ is called a *logit*

Current Mainstream

- How it works?
 - left-to-right, word-by-word
 - select a token from a vocabulary

prefix 🔂 tokens in vocabulary (retrieval)

Current Mainstream vs Our Proposal (CoG)

- How it works?
 - left-to-right, word-by-word
 - select a token from a vocabulary

prefix 🔂 tokens in vocabulary (retrieval)

- How it works?
 - left-to-right, phrase-by-phrase
 - select a phrase from memories

prefix phrases in memories (retrieval, too)

- How it works
 - left-to-right, phrase-by-phrase
 - select a phrase from memories

fixed, finite, and standalone vs. dynamic, extensible, and contextualized

Flag burning "flag burning" refers only to burning a flag as an act of protest.		sends	Each song has a powerful message designed to stop a make you think about your life		
Flag burning is a propaganda tool, such as burning Effigies of world leaders.		sends	the song sends a powerful message through its lyrics, telling listeners to 'keep going' and to fight for		
Flag burning situation escalated further after the parliamentary elections in		for its "very bold move making tonight plant-based. It really sends a powerful message." Soon after, Critics' Choice and SAG			ant-based. It really ' Choice and SAG
Flag	burning	sends	a	powerful	message

(Current mainstream is a specialized case of COG)

- How it works
 - left-to-right, phrase-by-phrase
 - select a phrase from memories
- Advantages fixed, finite, and standalone vs. dynamic, extensible, and contextualized
 - Accuracy: the semantics of phrases are enhanced by their surrounding contexts
 - Interpretability : each retrieved phrase can be traced back to its original source
 - Extensibility : memories can be edited and used in a *plug-and-play* fashion

The Dune film was released [in theaters on October 22, 2021 in the United States] [and was extremely well-received by critics and audiences] [Before] [that] [,] [the film premiered at the 78th International Film Festival on September 3, 2021.]

- Efficiency?
 - fewer generation steps, multiple tokens at one step
 - more parameters moved to the target side, phrase representations can be pre-• computed

 \checkmark

- Key challenges:
 - The construction of training data.
 - How a string of text is segmented?
 - What is the best source for each phrase?
 - Scaling up to millions of millions of documents and phrases.
 - filtering, clustering, and deduplication
 - dimensionality reduction, quantization
 - fast vector search algorithm
 - hierarchical search

- The construction of training data.
 - How a string of text is segmented?
 - What is the best source for each phrase?
- Our method:
 - Linguistics-motivated heuristics
 - Syntactic structure
 - Distributional sparsity
 - Semantic similarity
 - Iterative self-reinforcement
 - To adjust the generation paths based on its own preferences

- Training objective
 - InfoNCE + negative sampling N(p)

$$\mathcal{L}_p = \frac{\exp(E_p(p) \cdot E_c(s))}{\exp(E_p(p) \cdot E_c(s)) + \sum_{t \in N(p)} \exp(E_p(p) \cdot E_c(t))}$$

- Negative set construction
 - In-batch negative
 - Hard negative
 - top phrases that are not chosen in iterative self-reinforcement (top-k approximation!)

- Inference
 - We employ FAISS, a library for vector similarity search, for efficient retrieval
 - Continuation Generation:
 - top-k recall -> softmax (next phrase prob. distribution) -> top-p sampling or others
 - Likelihood Estimation:
 - Summing all possible generation paths
 - The generation prob. of each step is calculated as above
 - Compute efficiently using dynamic programming

- The Moon rises: 1. → The→moon→rises 2. → The moon→rises
- $3. \rightarrow$ The moon rises

Experiments

• Baselines

We compare the proposed method with standard LM in the zero-shot setting, also drawing the following state-of-the-art retrieval-augmented methods as baselines:

Base LM is the standard token-level language model using the Transformer (Vaswani et al., 2017) architecture. We fine-tune the pre-trained GPT-2⁵ (Radford et al., 2019).

kNN-LM (Khandelwal et al., 2020) is a retrieval-augmented LM that interpolates the next-token distribution of the base LM with a k-nearest neighbors (kNN) model.

RETRO (Borgeaud et al., 2022)⁶ is a retrieval-augmented LM incorporated with a pre-trained document retriever, a document encoder and a cross-attention mechanism.

CoG (Lan et al., 2023)⁷ is another retrieval-augmented LM that adopts a two-stage search pipeline. It first retrieves semantically-relevant documents, and then considers all n-grams within them as candidate phrases.

• Tasks

- Knowledge-intensive tasks
 - OpenbookQA, ARC-Chanllenge, TruthfulQA, MedMCQA, MedUSIMLE
- Open-ended text generation
- Phrase Index: Wikipedia, 137, 101, 097

Experiments

• Knowledge-intensive tasks

	TruthfulQA	OpenbookQA	ARC-Challenge	MedMCQA	Med-USMILE
Base LM (w/o FT)	30.27	22.67	24.52	27.96	24.89
Base LM	29.73	23.47	23.92	28.33	24.19
kNN-LM	30.27	22.93	24.82	27.96	24.72
RETRO	27.53	26.13	22.21	25.68	25.33
CoG	34.11	35.47	27.24	29.07	25.07
Ours	34.27	36.27	28.27	29.44	25.69

• Switch to large index (3x) without training

	TruthfulQA	OpenbookQA	ARC-Challenge	MedMCQA	Med-USMILE
Ours	34.27	36.27	28.27	29.44	25.69
w/ enlarged index	39.59	37.07	27.14	31.63	27.87

• Switch to specialized index without training

	MedMCQA	Med-USMILE
Base LM (FT)	28.79	25.15
General index	29.44	25.69
Medical index	29.50	26.38

Experiments

• Open-ended text generation

	MAUVE ↑	Coherence	Diversity	Latency↓
Base LM (w/o FT)	69.68	3.64	83.14	1.00x
Base LM	42.61	3.56	78.72	1.00x
kNN-LM	13.07	5.63	88.10	6.29x
RETRO	62.39	4.82	80.96	1.51x
CoG	52.27	2.08	55.04	4.40x
Ours	81.58	3.25	76.26	1.29 x

 Table 4: Results for open-ended text generation.

Model	Fluency	Coherence	Informativeness	Grammar
Base LM (w/o FT)	2.91	2.33	2.35	3.00
Base LM	2.81	2.37	2.40	2.79
Ours	2.95	2.70	2.67	3.02

Table 5: Human evaluation results.