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matrices that have much larger normalized singular values and thus much higher rank than Softmax
and other baselines on real-world datasets.

We evaluate our proposed approach on standard language modeling benchmarks. MoS substantially
improves over the current state-of-the-art results on benchmarks, by up to 3.6 points in terms of
perplexity, reaching perplexities 47.69 on Penn Treebank and 40.68 on WikiText-2. We further
apply MoS to a dialog dataset and show improved performance over Softmax and other baselines.

Our contribution is two-fold. First, we identify the Softmax bottleneck by formulating language
modeling as a matrix factorization problem. Second, we propose a simple and effective method that
substantially improves over the current state-of-the-art results.

2 LANGUAGE MODELING AS MATRIX FACTORIZATION

As discussed in Section 1, with the autoregressive factorization, language modeling can be reduced
to modeling the conditional distribution of the next token x given the context c. Though one might ar-
gue that a natural language allows an infinite number of contexts due to its compositionality (Pinker,
1994), we proceed with our analysis by considering a finite set of possible contexts. The unbound-
edness of natural language does not affect our conclusions, which will be discussed later.

We consider a natural language as a finite set of pairs of a context and its conditional next-token
distribution2 L = {(c1, P ⇤(X|c1)), · · · , (cN , P ⇤(X|cN ))}, where N is the number of possible
contexts. We assume P ⇤ > 0 everywhere to account for errors and flexibility in natural language.
Let {x1, x2, · · · , xM} denote a set of M possible tokens in the language L. The objective of a
language model is to learn a model distribution P✓(X|C) parameterized by ✓ to match the true data
distribution P ⇤(X|C).

In this work, we study the expressiveness of the parametric model class P✓(X|C). In other words,
we are asking the following question: given a natural language L, does there exist a parameter ✓
such that P✓(X|c) = P ⇤(X|c) for all c in L?

We start by looking at a Softmax-based model class since it is widely used.

2.1 SOFTMAX

The majority of parametric language models use a Softmax function operating on a context vector
(or hidden state) hc and a word embedding wx to define the conditional distribution P✓(x|c). More
specifically, the model distribution is usually written as

P✓(x|c) =
exph>

c wxP
x0 exph>

c wx0
(1)

where hc is a function of c, and wx is a function of x. Both functions are parameterized by ✓. Both
the context vector hc and the word embedding wx have the same dimension d. The dot product
h
>
c wx is called a logit.

To help discuss the expressiveness of Softmax, we define three matrices:
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where H✓ 2 RN⇥d, W✓ 2 RM⇥d, A 2 RN⇥M , and the rows of H✓, W✓, and A correspond to
context vectors, word embeddings, and log probabilities of the true data distribution respectively.
We use the subscript ✓ because (H✓,W✓) is effectively a function indexed by the parameter ✓, from
the joint function family U . Concretely, H✓ is implemented as deep neural networks, such as a
recurrent network, while W✓ is instantiated as an embedding lookup.

We further specify a set of matrices formed by applying row-wise shift to A

F (A) = {A+⇤JN,M |⇤ is diagonal and ⇤ 2 RN⇥N},
2We use capital letters for variables and small letters for constants.
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ABSTRACT

We formulate language modeling as a matrix factorization problem, and show
that the expressiveness of Softmax-based models (including the majority of neu-
ral language models) is limited by a Softmax bottleneck. Given that natural lan-
guage is highly context-dependent, this further implies that in practice Softmax
with distributed word embeddings does not have enough capacity to model nat-
ural language. We propose a simple and effective method to address this issue,
and improve the state-of-the-art perplexities on Penn Treebank and WikiText-2 to
47.69 and 40.68 respectively. The proposed method also excels on the large-scale
1B Word dataset, outperforming the baseline by over 5.6 points in perplexity.1

1 INTRODUCTION

As a fundamental task in natural language processing, statistical language modeling has gone
through significant development from traditional Ngram language models to neural language mod-
els in the last decade (Bengio et al., 2003; Mnih & Hinton, 2007; Mikolov et al., 2010). Despite
the huge variety of models, as a density estimation problem, language modeling mostly relies on a
universal auto-regressive factorization of the joint probability and then models each conditional fac-
tor using different approaches. Specifically, given a corpus of tokens X = (X1, . . . , XT ), the joint
probability P (X) factorizes as P (X) =

Q
t P (Xt | X<t) =

Q
t P (Xt | Ct), where Ct = X<t is

referred to as the context of the conditional probability hereafter.

Based on the factorization, recurrent neural networks (RNN) based language models achieve state-
of-the-art results on various benchmarks (Merity et al., 2017; Melis et al., 2017; Krause et al., 2017).
A standard approach is to use a recurrent network to encode the context into a fixed size vector,
which is then multiplied by the word embeddings (Inan et al., 2016; Press & Wolf, 2017) using dot
product to obtain the logits. The logits are consumed by the Softmax function to give a categorical
probability distribution over the next token. In spite of the expressiveness of RNNs as universal
approximators (Schäfer & Zimmermann, 2006), an unclear question is whether the combination
of dot product and Softmax is capable of modeling the conditional probability, which can vary
dramatically with the change of the context.

In this work, we study the expressiveness of the aforementioned Softmax-based recurrent language
models from a perspective of matrix factorization. We show that learning a Softmax-based recurrent
language model with the standard formulation is essentially equivalent to solving a matrix factoriza-
tion problem. More importantly, due to the fact that natural language is highly context-dependent,
the matrix to be factorized can be high-rank. This further implies that standard Softmax-based lan-
guage models with distributed (output) word embeddings do not have enough capacity to model
natural language. We call this the Softmax bottleneck.

We propose a simple and effective method to address the Softmax bottleneck. Specifically, we
introduce discrete latent variables into a recurrent language model, and formulate the next-token
probability distribution as a Mixture of Softmaxes (MoS). Mixture of Softmaxes is more expressive
than Softmax and other surrogates considered in prior work. Moreover, we show that MoS learns

⇤Equal contribution. Ordering determined by dice rolling.
1Code is available at https://github.com/zihangdai/mos.
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matrices that have much larger normalized singular values and thus much higher rank than Softmax
and other baselines on real-world datasets.

We evaluate our proposed approach on standard language modeling benchmarks. MoS substantially
improves over the current state-of-the-art results on benchmarks, by up to 3.6 points in terms of
perplexity, reaching perplexities 47.69 on Penn Treebank and 40.68 on WikiText-2. We further
apply MoS to a dialog dataset and show improved performance over Softmax and other baselines.

Our contribution is two-fold. First, we identify the Softmax bottleneck by formulating language
modeling as a matrix factorization problem. Second, we propose a simple and effective method that
substantially improves over the current state-of-the-art results.

2 LANGUAGE MODELING AS MATRIX FACTORIZATION

As discussed in Section 1, with the autoregressive factorization, language modeling can be reduced
to modeling the conditional distribution of the next token x given the context c. Though one might ar-
gue that a natural language allows an infinite number of contexts due to its compositionality (Pinker,
1994), we proceed with our analysis by considering a finite set of possible contexts. The unbound-
edness of natural language does not affect our conclusions, which will be discussed later.

We consider a natural language as a finite set of pairs of a context and its conditional next-token
distribution2 L = {(c1, P ⇤(X|c1)), · · · , (cN , P ⇤(X|cN ))}, where N is the number of possible
contexts. We assume P ⇤ > 0 everywhere to account for errors and flexibility in natural language.
Let {x1, x2, · · · , xM} denote a set of M possible tokens in the language L. The objective of a
language model is to learn a model distribution P✓(X|C) parameterized by ✓ to match the true data
distribution P ⇤(X|C).

In this work, we study the expressiveness of the parametric model class P✓(X|C). In other words,
we are asking the following question: given a natural language L, does there exist a parameter ✓
such that P✓(X|c) = P ⇤(X|c) for all c in L?

We start by looking at a Softmax-based model class since it is widely used.

2.1 SOFTMAX

The majority of parametric language models use a Softmax function operating on a context vector
(or hidden state) hc and a word embedding wx to define the conditional distribution P✓(x|c). More
specifically, the model distribution is usually written as

P✓(x|c) =
exph>

c wxP
x0 exph>

c wx0
(1)

where hc is a function of c, and wx is a function of x. Both functions are parameterized by ✓. Both
the context vector hc and the word embedding wx have the same dimension d. The dot product
h
>
c wx is called a logit.

To help discuss the expressiveness of Softmax, we define three matrices:
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where H✓ 2 RN⇥d, W✓ 2 RM⇥d, A 2 RN⇥M , and the rows of H✓, W✓, and A correspond to
context vectors, word embeddings, and log probabilities of the true data distribution respectively.
We use the subscript ✓ because (H✓,W✓) is effectively a function indexed by the parameter ✓, from
the joint function family U . Concretely, H✓ is implemented as deep neural networks, such as a
recurrent network, while W✓ is instantiated as an embedding lookup.

We further specify a set of matrices formed by applying row-wise shift to A

F (A) = {A+⇤JN,M |⇤ is diagonal and ⇤ 2 RN⇥N},
2We use capital letters for variables and small letters for constants.
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Figure 1: Illustration of the vanilla model with a segment length 4.

ageable sizes, and only train the model within
each segment, ignoring all contextual information
from previous segments. This is the idea adopted
by Al-Rfou et al. (2018). We call it the vanilla
model and visualize it in Fig. 1a. Under this
training paradigm, information never flows across
segments in either the forward or backward pass.
There are two critical limitations of using a fixed-
length context. First, the largest possible depen-
dency length is upper bounded by the segment
length, which is a few hundred on character-level
language modeling (Al-Rfou et al., 2018). There-
fore, although the self-attention mechanism is less
affected by the vanishing gradient problem com-
pared to RNNs, the vanilla model is not able to
fully exploit this optimization advantage. Second,
though it is possible to use padding to respect the
sentence or other semantic boundaries, in practice
it has been standard practice to simply chunk long
text into fixed-length segments due to improved
efficiency (Peters et al., 2018; Devlin et al., 2018;
Al-Rfou et al., 2018). However, simply chunking
a sequence into fixed-length segments will lead to
the context fragmentation problem as discussed in
Section 1.

During evaluation, at each step, the vanilla
model also consumes a segment of the same length
as in training, but only makes one prediction at the
last position. Then, at the next step, the segment
is shifted to the right by only one position, and the
new segment has to be processed all from scratch.
As shown in Fig. 1b, this procedure ensures that
each prediction utilizes the longest possible con-
text exposed during training, and also relieves con-
text fragmentation issue encountered in training.
However, this evaluation procedure is extremely
expensive. We will show that our proposed archi-
tecture is able to substantially improve the evalua-
tion speed.

3.2 Segment-Level Recurrence with State

Reuse

To address the limitations of using a fixed-length
context, we propose to introduce a recurrence
mechanism to the Transformer architecture. Dur-
ing training, the hidden state sequence computed
for the previous segment is fixed and cached to
be reused as an extended context when the model
processes the next new segment, as shown in Fig.
2a. Although the gradient still remains within a
segment, this additional input allows the network
to exploit information in the history, leading to an
ability of modeling longer-term dependency and
avoiding context fragmentation. Formally, let the
two consecutive segments of length L be s⌧ =
[x⌧,1, · · · , x⌧,L] and s⌧+1 = [x⌧+1,1, · · · , x⌧+1,L]
respectively. Denoting the n-th layer hidden state
sequence produced for the ⌧ -th segment s⌧ by
hn
⌧ 2 RL⇥d, where d is the hidden dimension.

Then, the n-th layer hidden state for segment s⌧+1

is produced (schematically) as follows,
ehn�1
⌧+1 =

⇥
SG(hn�1
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qn
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⌧+1) .

where the function SG(·) stands for stop-gradient,
the notation [hu � hv] indicates the concatenation
of two hidden sequences along the length dimen-
sion, and W· denotes model parameters. Com-
pared to the standard Transformer, the critical dif-
ference lies in that the key kn

⌧+1 and value vn
⌧+1

are conditioned on the extended context ehn�1
⌧+1 and

hence hn�1
⌧ cached from the previous segment.

We emphasize this particular design by the green
paths in Fig. 2a.

With this recurrence mechanism applied to ev-
ery two consecutive segments of a corpus, it es-
sentially creates a segment-level recurrence in the
hidden states. As a result, the effective context be-
ing utilized can go way beyond just two segments.
However, notice that the recurrent dependency be-
tween hn

⌧+1 and hn�1
⌧ shifts one layer downwards
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matrices that have much larger normalized singular values and thus much higher rank than Softmax
and other baselines on real-world datasets.
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that the expressiveness of Softmax-based models (including the majority of neu-
ral language models) is limited by a Softmax bottleneck. Given that natural lan-
guage is highly context-dependent, this further implies that in practice Softmax
with distributed word embeddings does not have enough capacity to model nat-
ural language. We propose a simple and effective method to address this issue,
and improve the state-of-the-art perplexities on Penn Treebank and WikiText-2 to
47.69 and 40.68 respectively. The proposed method also excels on the large-scale
1B Word dataset, outperforming the baseline by over 5.6 points in perplexity.1

1 INTRODUCTION

As a fundamental task in natural language processing, statistical language modeling has gone
through significant development from traditional Ngram language models to neural language mod-
els in the last decade (Bengio et al., 2003; Mnih & Hinton, 2007; Mikolov et al., 2010). Despite
the huge variety of models, as a density estimation problem, language modeling mostly relies on a
universal auto-regressive factorization of the joint probability and then models each conditional fac-
tor using different approaches. Specifically, given a corpus of tokens X = (X1, . . . , XT ), the joint
probability P (X) factorizes as P (X) =

Q
t P (Xt | X<t) =

Q
t P (Xt | Ct), where Ct = X<t is

referred to as the context of the conditional probability hereafter.

Based on the factorization, recurrent neural networks (RNN) based language models achieve state-
of-the-art results on various benchmarks (Merity et al., 2017; Melis et al., 2017; Krause et al., 2017).
A standard approach is to use a recurrent network to encode the context into a fixed size vector,
which is then multiplied by the word embeddings (Inan et al., 2016; Press & Wolf, 2017) using dot
product to obtain the logits. The logits are consumed by the Softmax function to give a categorical
probability distribution over the next token. In spite of the expressiveness of RNNs as universal
approximators (Schäfer & Zimmermann, 2006), an unclear question is whether the combination
of dot product and Softmax is capable of modeling the conditional probability, which can vary
dramatically with the change of the context.

In this work, we study the expressiveness of the aforementioned Softmax-based recurrent language
models from a perspective of matrix factorization. We show that learning a Softmax-based recurrent
language model with the standard formulation is essentially equivalent to solving a matrix factoriza-
tion problem. More importantly, due to the fact that natural language is highly context-dependent,
the matrix to be factorized can be high-rank. This further implies that standard Softmax-based lan-
guage models with distributed (output) word embeddings do not have enough capacity to model
natural language. We call this the Softmax bottleneck.

We propose a simple and effective method to address the Softmax bottleneck. Specifically, we
introduce discrete latent variables into a recurrent language model, and formulate the next-token
probability distribution as a Mixture of Softmaxes (MoS). Mixture of Softmaxes is more expressive
than Softmax and other surrogates considered in prior work. Moreover, we show that MoS learns

⇤Equal contribution. Ordering determined by dice rolling.
1Code is available at https://github.com/zihangdai/mos.
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matrices that have much larger normalized singular values and thus much higher rank than Softmax
and other baselines on real-world datasets.

We evaluate our proposed approach on standard language modeling benchmarks. MoS substantially
improves over the current state-of-the-art results on benchmarks, by up to 3.6 points in terms of
perplexity, reaching perplexities 47.69 on Penn Treebank and 40.68 on WikiText-2. We further
apply MoS to a dialog dataset and show improved performance over Softmax and other baselines.

Our contribution is two-fold. First, we identify the Softmax bottleneck by formulating language
modeling as a matrix factorization problem. Second, we propose a simple and effective method that
substantially improves over the current state-of-the-art results.

2 LANGUAGE MODELING AS MATRIX FACTORIZATION

As discussed in Section 1, with the autoregressive factorization, language modeling can be reduced
to modeling the conditional distribution of the next token x given the context c. Though one might ar-
gue that a natural language allows an infinite number of contexts due to its compositionality (Pinker,
1994), we proceed with our analysis by considering a finite set of possible contexts. The unbound-
edness of natural language does not affect our conclusions, which will be discussed later.

We consider a natural language as a finite set of pairs of a context and its conditional next-token
distribution2 L = {(c1, P ⇤(X|c1)), · · · , (cN , P ⇤(X|cN ))}, where N is the number of possible
contexts. We assume P ⇤ > 0 everywhere to account for errors and flexibility in natural language.
Let {x1, x2, · · · , xM} denote a set of M possible tokens in the language L. The objective of a
language model is to learn a model distribution P✓(X|C) parameterized by ✓ to match the true data
distribution P ⇤(X|C).

In this work, we study the expressiveness of the parametric model class P✓(X|C). In other words,
we are asking the following question: given a natural language L, does there exist a parameter ✓
such that P✓(X|c) = P ⇤(X|c) for all c in L?

We start by looking at a Softmax-based model class since it is widely used.

2.1 SOFTMAX

The majority of parametric language models use a Softmax function operating on a context vector
(or hidden state) hc and a word embedding wx to define the conditional distribution P✓(x|c). More
specifically, the model distribution is usually written as

P✓(x|c) =
exph>

c wxP
x0 exph>

c wx0
(1)

where hc is a function of c, and wx is a function of x. Both functions are parameterized by ✓. Both
the context vector hc and the word embedding wx have the same dimension d. The dot product
h
>
c wx is called a logit.

To help discuss the expressiveness of Softmax, we define three matrices:

H✓ =

2

664

h
>
c1

h
>
c2

· · ·
h
>
cN

3

775 ; W✓ =

2

664

w
>
x1

w
>
x2

· · ·
w

>
xM

3

775 ; A =

2

664

logP ⇤(x1|c1), logP ⇤(x2|c1) · · · logP ⇤(xM |c1)
logP ⇤(x1|c2), logP ⇤(x2|c2) · · · logP ⇤(xM |c2)

...
...

. . .
...

logP ⇤(x1|cN ), logP ⇤(x2|cN ) · · · logP ⇤(xM |cN )

3

775

where H✓ 2 RN⇥d, W✓ 2 RM⇥d, A 2 RN⇥M , and the rows of H✓, W✓, and A correspond to
context vectors, word embeddings, and log probabilities of the true data distribution respectively.
We use the subscript ✓ because (H✓,W✓) is effectively a function indexed by the parameter ✓, from
the joint function family U . Concretely, H✓ is implemented as deep neural networks, such as a
recurrent network, while W✓ is instantiated as an embedding lookup.

We further specify a set of matrices formed by applying row-wise shift to A

F (A) = {A+⇤JN,M |⇤ is diagonal and ⇤ 2 RN⇥N},
2We use capital letters for variables and small letters for constants.
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Figure 1: Illustration of the vanilla model with a segment length 4.

ageable sizes, and only train the model within
each segment, ignoring all contextual information
from previous segments. This is the idea adopted
by Al-Rfou et al. (2018). We call it the vanilla
model and visualize it in Fig. 1a. Under this
training paradigm, information never flows across
segments in either the forward or backward pass.
There are two critical limitations of using a fixed-
length context. First, the largest possible depen-
dency length is upper bounded by the segment
length, which is a few hundred on character-level
language modeling (Al-Rfou et al., 2018). There-
fore, although the self-attention mechanism is less
affected by the vanishing gradient problem com-
pared to RNNs, the vanilla model is not able to
fully exploit this optimization advantage. Second,
though it is possible to use padding to respect the
sentence or other semantic boundaries, in practice
it has been standard practice to simply chunk long
text into fixed-length segments due to improved
efficiency (Peters et al., 2018; Devlin et al., 2018;
Al-Rfou et al., 2018). However, simply chunking
a sequence into fixed-length segments will lead to
the context fragmentation problem as discussed in
Section 1.

During evaluation, at each step, the vanilla
model also consumes a segment of the same length
as in training, but only makes one prediction at the
last position. Then, at the next step, the segment
is shifted to the right by only one position, and the
new segment has to be processed all from scratch.
As shown in Fig. 1b, this procedure ensures that
each prediction utilizes the longest possible con-
text exposed during training, and also relieves con-
text fragmentation issue encountered in training.
However, this evaluation procedure is extremely
expensive. We will show that our proposed archi-
tecture is able to substantially improve the evalua-
tion speed.

3.2 Segment-Level Recurrence with State

Reuse

To address the limitations of using a fixed-length
context, we propose to introduce a recurrence
mechanism to the Transformer architecture. Dur-
ing training, the hidden state sequence computed
for the previous segment is fixed and cached to
be reused as an extended context when the model
processes the next new segment, as shown in Fig.
2a. Although the gradient still remains within a
segment, this additional input allows the network
to exploit information in the history, leading to an
ability of modeling longer-term dependency and
avoiding context fragmentation. Formally, let the
two consecutive segments of length L be s⌧ =
[x⌧,1, · · · , x⌧,L] and s⌧+1 = [x⌧+1,1, · · · , x⌧+1,L]
respectively. Denoting the n-th layer hidden state
sequence produced for the ⌧ -th segment s⌧ by
hn
⌧ 2 RL⇥d, where d is the hidden dimension.

Then, the n-th layer hidden state for segment s⌧+1

is produced (schematically) as follows,
ehn�1
⌧+1 =

⇥
SG(hn�1

⌧ ) � hn�1
⌧+1

⇤
,

qn
⌧+1,k

n
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>
q , ehn�1

⌧+1W
>
k , ehn�1

⌧+1W
>
v ,

hn
⌧+1 = Transformer-Layer (qn

⌧+1,k
n
⌧+1,v

n
⌧+1) .

where the function SG(·) stands for stop-gradient,
the notation [hu � hv] indicates the concatenation
of two hidden sequences along the length dimen-
sion, and W· denotes model parameters. Com-
pared to the standard Transformer, the critical dif-
ference lies in that the key kn

⌧+1 and value vn
⌧+1

are conditioned on the extended context ehn�1
⌧+1 and

hence hn�1
⌧ cached from the previous segment.

We emphasize this particular design by the green
paths in Fig. 2a.

With this recurrence mechanism applied to ev-
ery two consecutive segments of a corpus, it es-
sentially creates a segment-level recurrence in the
hidden states. As a result, the effective context be-
ing utilized can go way beyond just two segments.
However, notice that the recurrent dependency be-
tween hn

⌧+1 and hn�1
⌧ shifts one layer downwards
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ageable sizes, and only train the model within
each segment, ignoring all contextual information
from previous segments. This is the idea adopted
by Al-Rfou et al. (2018). We call it the vanilla
model and visualize it in Fig. 1a. Under this
training paradigm, information never flows across
segments in either the forward or backward pass.
There are two critical limitations of using a fixed-
length context. First, the largest possible depen-
dency length is upper bounded by the segment
length, which is a few hundred on character-level
language modeling (Al-Rfou et al., 2018). There-
fore, although the self-attention mechanism is less
affected by the vanishing gradient problem com-
pared to RNNs, the vanilla model is not able to
fully exploit this optimization advantage. Second,
though it is possible to use padding to respect the
sentence or other semantic boundaries, in practice
it has been standard practice to simply chunk long
text into fixed-length segments due to improved
efficiency (Peters et al., 2018; Devlin et al., 2018;
Al-Rfou et al., 2018). However, simply chunking
a sequence into fixed-length segments will lead to
the context fragmentation problem as discussed in
Section 1.

During evaluation, at each step, the vanilla
model also consumes a segment of the same length
as in training, but only makes one prediction at the
last position. Then, at the next step, the segment
is shifted to the right by only one position, and the
new segment has to be processed all from scratch.
As shown in Fig. 1b, this procedure ensures that
each prediction utilizes the longest possible con-
text exposed during training, and also relieves con-
text fragmentation issue encountered in training.
However, this evaluation procedure is extremely
expensive. We will show that our proposed archi-
tecture is able to substantially improve the evalua-
tion speed.

3.2 Segment-Level Recurrence with State

Reuse

To address the limitations of using a fixed-length
context, we propose to introduce a recurrence
mechanism to the Transformer architecture. Dur-
ing training, the hidden state sequence computed
for the previous segment is fixed and cached to
be reused as an extended context when the model
processes the next new segment, as shown in Fig.
2a. Although the gradient still remains within a
segment, this additional input allows the network
to exploit information in the history, leading to an
ability of modeling longer-term dependency and
avoiding context fragmentation. Formally, let the
two consecutive segments of length L be s⌧ =
[x⌧,1, · · · , x⌧,L] and s⌧+1 = [x⌧+1,1, · · · , x⌧+1,L]
respectively. Denoting the n-th layer hidden state
sequence produced for the ⌧ -th segment s⌧ by
hn
⌧ 2 RL⇥d, where d is the hidden dimension.

Then, the n-th layer hidden state for segment s⌧+1

is produced (schematically) as follows,
ehn�1
⌧+1 =

⇥
SG(hn�1
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⌧+1

⇤
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where the function SG(·) stands for stop-gradient,
the notation [hu � hv] indicates the concatenation
of two hidden sequences along the length dimen-
sion, and W· denotes model parameters. Com-
pared to the standard Transformer, the critical dif-
ference lies in that the key kn

⌧+1 and value vn
⌧+1

are conditioned on the extended context ehn�1
⌧+1 and

hence hn�1
⌧ cached from the previous segment.

We emphasize this particular design by the green
paths in Fig. 2a.

With this recurrence mechanism applied to ev-
ery two consecutive segments of a corpus, it es-
sentially creates a segment-level recurrence in the
hidden states. As a result, the effective context be-
ing utilized can go way beyond just two segments.
However, notice that the recurrent dependency be-
tween hn

⌧+1 and hn�1
⌧ shifts one layer downwards
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3.2.1 LINGUISTICS-MOTIVATED HEURISTICS

We start to design the training oracles through the following principles.

Syntactic Structure. Inspired by the syntactic structure of language and its implications on lan-
guage generation (Chomsky, 1957; Dyer et al., 2016; Li et al., 2023b), we restrict the phrase to a
contiguous sequence of words that corresponds to a constituent unit in a syntactic parse tree. This
approach ensures that each phrase possesses a relatively complete and well-defined meaning, while
avoiding arbitrary word combinations that could result in semantic ambiguity or nonsensical forma-
tions (Morgan & Newport, 1981).

Distributional Sparsity. The inclusion of high-frequency phrases significantly inflates the size of
the candidate pool. This is due to our treatment of lexically identical phrases in different contexts
as distinct entries in the pool. Consequently, a single high-frequency phrase could potentially intro-
duce tens of thousands, or even millions, of entries. In our analysis of Wikipedia, we discovered
that eliminating just the top 1% of high-frequency phrases could reduce the total number of entries
by 50%. However, these high-frequency phrases, such as ’as well as’, often lack specific meanings.
Their inclusion may result in imbalanced training, which could adversely affect the model’s overall
performance. Regarding phrases with extremely low frequency, we consider them to be rare us-
ages with limited practical use. Including them would notably increase the complexity of training.
Therefore, we also choose to exclude them.

Semantic Similarity. Although a lexically identical copy of a phrase can be located in various
places, it is crucial to account for polysemy (Cruse, 1986), as lexically identical phrases can exhibit
different meanings depending on their contexts. Moreover, even when lexically identical phrases
share similar meanings, subtle nuances can arise from different contexts, necessitating a thorough
evaluation of semantic similarity when selecting the most appropriate matching (Min et al., 2019).

Specifically, we first run the Stanford Parser1 to extract constituents from the training data. We then
filter these constituents based on the following criteria: (1) remove trivial constituents with labels
such as WHADJP, WHADVP; (2) exclude constituents that are too short (< 2 words) or too long (> 10
words); (3) discard constituents with excessively high or low Inverse Document Frequency (IDF)
(Salton & Buckley, 1988) values. Notably, we apply a more lenient IDF threshold for longer con-
stituents. Next, we group lexically identical phrases and compute the pairwise semantic similarities
using BM25 (Robertson et al., 2009) and an off-the-shelf phrase encoder (Lee et al., 2021b). Conse-
quently, we can identify the most suitable next phrase for each prefix based on the scores. For more
detailed information, please refer to the Appendix A.

3.2.2 ITERATIVE SELF-REINFORCEMENT

The generation paths determined by the above heuristics are model-agnostic and could be noisy and
sub-optimal (Welleck et al., 2019). To further improve performance, we allow the model to adjust its
own generation paths based on the capabilities it has acquired. That is, transitioning from imitating
the oracles to reinforcing its own preferences. In particular, we propose a bootstrapping algorithm
to iteratively adjust the target phrases. For each prefix p, we first let the model retrieve the k-best
phrases in the entire candidate pool using its current policy. Then, we choose the valid phrase with
the highest semantic matching score from these k phrases as the new target. If no such phrase is
found, i.e., none of the k-best phrases match the ground-truth continuation, we retain the previous
target. The above process is repeated periodically. We present an example in Appendix B.

3.3 TRAINING OBJECTIVES

We optimize our model using the InfoNCE loss (Oord et al., 2018; Karpukhin et al., 2020), for which
a negative phrase set N (p) is introduced for each triplet (p, f, s).

Lp =
exp(Ep(p) · Ec(s))

exp(Ep(p) · Ec(s)) +
P

t2N(p) exp(Ep(p) · Ec(t))
(2)

The construction of the negative phrase set N (p) is detailed below. To preserve the ability for token-
level generation, we also train our model with the standard next-token prediction loss Lt (Lan et al.,
2023). The training objective is formulated as Lp + ↵Lt.

1https://stanfordnlp.github.io/stanza/
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• We employ FAISS, a library for vector similarity search, for efficient retrieval
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Likelihood Estimation. To calculate the likelihood of a given text, we approximate the likelihood
by summing all possible generation paths. For instance, given the sentence ”The Moon rises”,
the following generation paths may exist: (1) The!moon!rises; (2) The moon!rises; (3) The
moon rises. The probability of each path is the product of the probabilities of all phrases (tokens)
along that path. For example, the probability of the path (2) is calculated by p(rises|The moon) ·
p(The moon). The probabilities of each step are obtained in the same way as we construct the
next-phrase probability distribution for continuation generation. Note that the sum of all possible
paths can be computed efficiently using dynamic programming with time complexity O(n2), where
n represents the number of tokens in the text.

4.3 BASELINES

We compare the proposed method with standard LM in the zero-shot setting, also drawing the fol-
lowing state-of-the-art retrieval-augmented methods as baselines:

Base LM is the standard token-level language model using the Transformer (Vaswani et al., 2017)
architecture. We fine-tune the pre-trained GPT-25 (Radford et al., 2019).

kNN-LM (Khandelwal et al., 2020) is a retrieval-augmented LM that interpolates the next-token
distribution of the base LM with a k-nearest neighbors (kNN) model.

RETRO (Borgeaud et al., 2022)6 is a retrieval-augmented LM incorporated with a pre-trained doc-
ument retriever, a document encoder and a cross-attention mechanism.

CoG (Lan et al., 2023)7 is another retrieval-augmented LM that adopts a two-stage search pipeline.
It first retrieves semantically-relevant documents, and then considers all n-grams within them as
candidate phrases.

5 EXPERIMENTS

We verify the effectiveness of our methods on a set of knowledge-intensive tasks and open-ended
text generation tasks without fine-tuning.

5.1 KNOWLEDGE-INTENSIVE TASKS

5.1.1 DATASETS

We employ five knowledge-insensitive datasets, including three open-domain QA datasets: Open-
bookQA (Mihaylov et al., 2018), ARC-Challenge (Clark et al., 2018), and TruthfulQA (Lin
et al., 2022); and two domain-specific (medical) datasets: MedMCQA (Pal et al., 2022) and Med-
USMILE (Jin et al., 2021). The details for these datasets can be found in Appendix C.

In line with prior research (Brown et al., 2020; Sanh et al., 2022), we adopt a classification with op-
tions methodology to quantify the model performance. This approach involves presenting the model
with a range of options and calculating the likelihood of each option being the correct response.
The option with the highest probability is selected as the model’s prediction. We then report the
accuracy of the model’s predictions.

5.1.2 RESULTS

We compare our methods with baselines in knowledge-intensive tasks across several settings.

Main Results. As shown in Table 1, our model consistently outperforms various baseline models
across all datasets. Compared with base LM, our model improves the accuracy of the TruthfulQA
and OpenBookQA datasets from 29.73% to 34.27% and 23.47% to 36.27%, respectively. When we
eliminate the phrase retrieval from our model and only use standalone tokens (Ours w/o phrase),
there is a considerable drop in performance, demonstrating the effectiveness of incorporating phrase

5https://huggingface.co/gpt2
6https://github.com/lucidrains/RETRO-pytorch
7https://github.com/gmftbyGMFTBY/Copyisallyouneed
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TruthfulQA OpenbookQA ARC-Challenge MedMCQA Med-USMILE
Base LM (w/o FT) 30.27 22.67 24.52 27.96 24.89

Base LM 29.73 23.47 23.92 28.33 24.19
kNN-LM 30.27 22.93 24.82 27.96 24.72
RETRO 27.53 26.13 22.21 25.68 25.33

CoG 34.11 35.47 27.24 29.07 25.07
Ours 34.27 36.27 28.27 29.44 25.69

Ours (w/o phrase) 28.63 23.73 22.51 27.42 24.80

Table 1: Experiments on knowledge-intensive tasks. Ours (w/o phrase): a variant of our model that
restricts the model to only use standalone tokens without retrieving context-aware phrases.

TruthfulQA OpenbookQA ARC-Challenge MedMCQA Med-USMILE
Ours 34.27 36.27 28.27 29.44 25.69

w/ enlarged index 39.59 37.07 27.14 31.63 27.87

Table 2: Results for our model with an enlarged phrase index.

retrieval in our methods. Note that the models presented in Table 1 are initialized from pre-trained
LMs. To analyze the role of pre-trained models in our framework, we train all models from scratch
with random initialization. The results are shown in Table 8 in Appendix G, our model outperforms
the baselines across all datasets. For example, our model achieves a 12.8% absolute improvement
on OpenbookQA over base LM, suggesting that our training framework is not heavily dependent on
pre-trained models. To elucidate the role of phrase retrieval in knowledge-intensive tasks, we delve
into a case study depicted in Appendix D.

Enlarged Phrase Index. Recall that we exclude phrases with excessively high or low IDF values
(Section 3.2.1). This strategy not only stabilizes the training process but also improves training
efficiency. However, the phrases initially filtered out can be repurposed to expand our phrase index
in a training-free manner. As evidenced in Table 2, this expansion boosts our model’s performance,
such as a 5.32% increase in accuracy on TruthfulQA. This underscores the potential of our approach
in generalizing to unseen phrase and/or documents. It also sheds light on the plug-and-play feature
of our model which can be adapted to a larger phrase table without any re-training.

MedMCQA Med-USMILE
Base LM (FT) 28.79 25.15
General index 29.44 25.69
Medical index 29.50 26.38

w/o phrase 27.42 24.80

Table 3: Results on medical datasets.

Domain Adaption. The plug-and-play
property of the phrase index further moti-
vates us to employ a domain-specific index
for the QA tasks in the medical domain
without any domain-specific training. To
this end, we construct an index consisting
of 3 million phrases by extracting phrases
from a small text collection of the medical
domain8. For comparison purpose, we also
fine-tune the base LM on it for fair comparison. As illustrated in Table 3, despite the considerable
reduction in index size compared to the original Wikipedia index (3 million vs 137 million), our
model exhibits even better performance on two medical QA datasets. This result underscores our
model’s capability to enhance its performance in specific domains by leveraging a domain-specific,
well-curated phrase index in a training-free manner.

5.2 OPEN-ENDED TEXT GENERATION

We conduct open-ended text generation experiments on the test set of MiniPile (Kaddour, 2023).
For each document in the test set, we adopt the first 128 tokens as the prefix. The baselines and our
model are required to generate text continuations of 128 tokens in length based on the same prefix.

8https://huggingface.co/datasets/gamino/wiki medical terms
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Table 1: Experiments on knowledge-intensive tasks. Ours (w/o phrase): a variant of our model that
restricts the model to only use standalone tokens without retrieving context-aware phrases.
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LMs. To analyze the role of pre-trained models in our framework, we train all models from scratch
with random initialization. The results are shown in Table 8 in Appendix G, our model outperforms
the baselines across all datasets. For example, our model achieves a 12.8% absolute improvement
on OpenbookQA over base LM, suggesting that our training framework is not heavily dependent on
pre-trained models. To elucidate the role of phrase retrieval in knowledge-intensive tasks, we delve
into a case study depicted in Appendix D.

Enlarged Phrase Index. Recall that we exclude phrases with excessively high or low IDF values
(Section 3.2.1). This strategy not only stabilizes the training process but also improves training
efficiency. However, the phrases initially filtered out can be repurposed to expand our phrase index
in a training-free manner. As evidenced in Table 2, this expansion boosts our model’s performance,
such as a 5.32% increase in accuracy on TruthfulQA. This underscores the potential of our approach
in generalizing to unseen phrase and/or documents. It also sheds light on the plug-and-play feature
of our model which can be adapted to a larger phrase table without any re-training.
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General index 29.44 25.69
Medical index 29.50 26.38
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Table 3: Results on medical datasets.

Domain Adaption. The plug-and-play
property of the phrase index further moti-
vates us to employ a domain-specific index
for the QA tasks in the medical domain
without any domain-specific training. To
this end, we construct an index consisting
of 3 million phrases by extracting phrases
from a small text collection of the medical
domain8. For comparison purpose, we also
fine-tune the base LM on it for fair comparison. As illustrated in Table 3, despite the considerable
reduction in index size compared to the original Wikipedia index (3 million vs 137 million), our
model exhibits even better performance on two medical QA datasets. This result underscores our
model’s capability to enhance its performance in specific domains by leveraging a domain-specific,
well-curated phrase index in a training-free manner.

5.2 OPEN-ENDED TEXT GENERATION

We conduct open-ended text generation experiments on the test set of MiniPile (Kaddour, 2023).
For each document in the test set, we adopt the first 128 tokens as the prefix. The baselines and our
model are required to generate text continuations of 128 tokens in length based on the same prefix.

8https://huggingface.co/datasets/gamino/wiki medical terms
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kNN-LM 30.27 22.93 24.82 27.96 24.72
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restricts the model to only use standalone tokens without retrieving context-aware phrases.
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retrieval in our methods. Note that the models presented in Table 1 are initialized from pre-trained
LMs. To analyze the role of pre-trained models in our framework, we train all models from scratch
with random initialization. The results are shown in Table 8 in Appendix G, our model outperforms
the baselines across all datasets. For example, our model achieves a 12.8% absolute improvement
on OpenbookQA over base LM, suggesting that our training framework is not heavily dependent on
pre-trained models. To elucidate the role of phrase retrieval in knowledge-intensive tasks, we delve
into a case study depicted in Appendix D.

Enlarged Phrase Index. Recall that we exclude phrases with excessively high or low IDF values
(Section 3.2.1). This strategy not only stabilizes the training process but also improves training
efficiency. However, the phrases initially filtered out can be repurposed to expand our phrase index
in a training-free manner. As evidenced in Table 2, this expansion boosts our model’s performance,
such as a 5.32% increase in accuracy on TruthfulQA. This underscores the potential of our approach
in generalizing to unseen phrase and/or documents. It also sheds light on the plug-and-play feature
of our model which can be adapted to a larger phrase table without any re-training.

MedMCQA Med-USMILE
Base LM (FT) 28.79 25.15
General index 29.44 25.69
Medical index 29.50 26.38

w/o phrase 27.42 24.80

Table 3: Results on medical datasets.

Domain Adaption. The plug-and-play
property of the phrase index further moti-
vates us to employ a domain-specific index
for the QA tasks in the medical domain
without any domain-specific training. To
this end, we construct an index consisting
of 3 million phrases by extracting phrases
from a small text collection of the medical
domain8. For comparison purpose, we also
fine-tune the base LM on it for fair comparison. As illustrated in Table 3, despite the considerable
reduction in index size compared to the original Wikipedia index (3 million vs 137 million), our
model exhibits even better performance on two medical QA datasets. This result underscores our
model’s capability to enhance its performance in specific domains by leveraging a domain-specific,
well-curated phrase index in a training-free manner.

5.2 OPEN-ENDED TEXT GENERATION

We conduct open-ended text generation experiments on the test set of MiniPile (Kaddour, 2023).
For each document in the test set, we adopt the first 128 tokens as the prefix. The baselines and our
model are required to generate text continuations of 128 tokens in length based on the same prefix.

8https://huggingface.co/datasets/gamino/wiki medical terms
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MAUVE" Coherence# Diversity" Latency#
Base LM (w/o FT) 69.68 3.64 83.14 1.00x

Base LM 42.61 3.56 78.72 1.00x
kNN-LM 13.07 5.63 88.10 6.29x
RETRO 62.39 4.82 80.96 1.51x

CoG 52.27 2.08 55.04 4.40x
Ours 81.58 3.25 76.26 1.29x

Table 4: Results for open-ended text generation.

Model Fluency Coherence Informativeness Grammar
Base LM (w/o FT) 2.91 2.33 2.35 3.00

Base LM 2.81 2.37 2.40 2.79
Ours 2.95 2.70 2.67 3.02

Table 5: Human evaluation results.

5.2.1 EVALUATION METRICS

Following previous works (Welleck et al., 2020; Su et al., 2022; Lan et al., 2023), we utilize three
automatic evaluation metrics to measure the quality of the generated texts: (i) MAUVE (Pillutla
et al., 2021) captures the overall usefulness of the generated text by estimating the average utility of
the content; (ii) Coherence measures the logical consistency and flow of the generated text, ensuring
that the output is well-structured and easy to understand; and (iii) Diversity evaluates the variety of
generated content, promoting the generation of unique and creative text. We report MAUVE and
diversity as percentages (%). The details for these metrics can be found in Appendix E. We also
measure the average time cost for a model to decode a continuation consisting of 128 tokens given
a prefix of 128 tokens, referred to as latency.

5.2.2 RESULTS

As shown in Table 4, our model attains the highest MAUVE score among all models, demonstrating
the high quality of the generated text. Other retrieval-augmented methods underperform base LM
in the MAUVE score due to text degeneration, which aligns with findings in previous work (Wang
et al., 2023). Our model also shows a strong balance between coherence and diversity. The co-
herence score of our model is 3.25, which outperforms most baselines except for CoG. However,
we find that CoG often generates lexically similar, meaningless sentences, which is reflected in its
low diversity score of 55.04%. Meanwhile, our model’s diversity score is 76.26%, which is slightly
lower than some baseline models, but these models often generate incoherent sentences, as reflected
in their lower coherence scores.

Human Evaluation. To gain further insights, we randomly sample 100 cases and evaluate the
results of the base LM, the base LM without fine-tuning (w/o FT), and our model from four per-
spectives: fluency, coherence, informativeness, and grammar. Each aspect is scored on a Likert
scale from 1 to 4 (1 represents ”bad”, 2 stands for ”fair”, 3 is considered ”good”, and 4 signifies
”very good”). We report the average scores in table 5. As we can see, our method outperforms the
base LM in all four categories, especially in coherence and informativeness. This indicates that our
model, based on phrase retrieval, is better at following the preceding context and providing more
informative content. As for the lower scores of the base LM compared to the base LM (w/o FT), we
find that they are largely due to formatting issues. Further analysis can be found in Appendix F.

Generation Speed. We now discuss the generation latency of different models. In Table 4, we re-
port the relative latency, taking the base LM as the baseline. kNN-LM incurs the highest cost due to
the need for interpolating the base LM’s token distribution with another distribution computed using
its datastore. The CoG model also exhibits a notable overhead as it involves extracting all n-grams
from the retrieved documents, applying softmax over tokens and all n-grams, and sampling from
the resulting probability distribution. The RETRO model, although faster than the previous two, still
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