

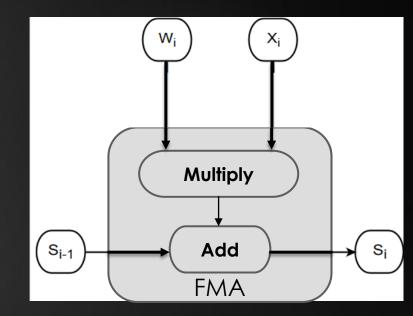
Towards Cheaper Inference in Deep Networks with Lower Bit-Width Accumulators

YANIV BLUMENFELD, ITAY HUBARA, DANIEL SOUDRY

International Conference On Learning Representation - 2024

Making Neural Networks More Efficient

- There are many existing methods to make neural networks more hardware efficient using quantization-of weights, activation and gradients.
- Quantization helps reducing the cost of the Fused-Multiply-Add (FMA) operation, by reducing the size of its inputs.
- In this work, we will focus on the **internal parts of the FMA** computation, (like **product accumulation)**, and propose a way to make them more efficient in hardware.
- **Our goal**: Allow inference for models using low-bitaccumulators (LBAs) without loss of accuracy.



Fine-Tuning for Inference with 12-Bits LBAs

no UF \rightarrow with UF

70.06%

73.45%

76.40%

Core Ideas:

Model

ResNet18

ResNet34

ResNet50

Baseline

70.23%

73.87%

76.80%

- Use Floating-Point Representation, with non-trivial exponent-biases.
- Start from a pretrained, full-precision model.
- Dual-Stage finetuning, with different treatment for different types of quantization error.

Resnet: No W/A Quantization

1-stage

69.94%

73.64%

74.70%

no UF*

70.01%

73.61%

76.60%

Resnet: FP8 W/A Quantization

Model		Data Type	Type Weights		Activations	s Accum	ulator	Top-1	Accuracy	
ResNet18		1								
Baseline	ļ	FP	32	ļ	32	32	2	70	0.23%	
Baseline (FP8	8)	FP 8		ļ	8	32	2	69.90%		
Wang et al. (20		FP 8		ļ	8	16	16		66.95%	
Ni et al. (2020	$\overline{0}$	INT	7	ļ	$2 \\ 8$		12		63.84%	
Ours (1-stage	-	FP	8	ļ			12		69.54%	
Ours (dual-stag	ge)	FP 8			8	12	12		69.70%	
ResNet34										
Baseline		FP	32		32		32		73.87%	
Baseline (FP8)		FP	8		8		32		73.49%	
Ours (1-stage)		FP	8	ļ	8		12		73.18%	
Ours (dual-stage)		FP	8		8	12	12		73.42%	
ResNet50							1			
Baseline		FP	32		32		32		76.80%	
Baseline (FP8)		FP	8	ļ	8	32			6.25%	
Wang et al. (2018)		FP	8	ļ	8	16		71.72%		
Ours (1-stage)		FP			8	12		74.15%		
Ours (dual-stage)		FP	8	8 8 12		2	76.22%			
		Baseline			LBA $(M7E4)$		LBA (1		7 <i>E</i> 4)	
		Dasenn	ie	1	$b_{\rm acc}, b_{\rm prod}=7,9$		b_{a}	$b_{\rm acc}, b_{\rm prod} = 8,10$		
Model	Exa	act (%)	f1 (%)	E	Exact (%)	f1 (%)		et (%)	f1 (%)	
Bert-Small	7	71.32	80.96		70.88	80.24	71	.35	80.59	
Bert-Base	7	79.84	87.53		79.60	87.62	79	.80	87.52	
Bert-Large	8	33.22	90.40		82.97	89.97	83	.25	90.66	

Below 12 Bits

- The previous method doesn't work with less than 12 bits.
- The culprit: For extreme quantization, the naïve Gradient estimator we used is too ``far away".
- Our solution: A novel implementation for Straight Through Estimator (STE), which is internal to the FMA computation graph.
- We suggest several alternatives for estimating the gradients in this setup.
- We implement this method when training transformers, closing much of the gap with full-precision training.

MNIST with Naïve STE:

LBA Format	Underflow	Top-1 Accuracy
FP32		98.64%
M6E3	Yes	42.28%
M4E3	Yes	18.28%
M4E3	No	18.28%

MNIST with M4E3 accumulation

STE Type	Underflow	Top-1 Accuracy
IM/OF	Yes	98.47%
IM/DIFF	Yes	11.35%
IM/DIFF	NO	97.67%
R/OF	Yes	98.46%

Summary

- Modern Neural Networks can be finetuned to operate with lower cost FMA hardware, with relative ease.
- Accumulation precision can be reduced to 12 bits without accuracy degradation
- For a 12 bits setup, a dedicated hardware can reduce the cost of inference by approximately 63%. (Based on Gate-Count analysis, included in the paper)
- Going below that would require a more careful approach, that utilizes special gradient computation kernels with dedicated STEs.

Thank You