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Entropy-MCMC: Sampling from 
Flat Basins with Ease
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Introduction: Loss/Energy Landscape
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[1] Keskar et al. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR 2017.
[2] Li et al. Visualizing the Loss Landscape of Neural Nets. NeurIPS 2018.

• Empirical observation: Flat minima generalize better.[1]



Introduction: Motivation

3[2] Li et al. Visualizing the Loss Landscape of Neural Nets. NeurIPS 2018.

• Energy landscape of DNNs is highly multi-modal.

• Not practical to sample from all modes.

• Flat modes generalize better.

• No MCMC methods consider flat minima before.



Local entropy[3]:

• Averaged energy within a local region.
• High local entropy indicates flat regions with low energy values.
• The main objective of Entropy-MCMC.

Stochastic gradient Langevin dynamics (SGLD)[4]:

• A standard MCMC algorithm.
• The backbone of Entropy-MCMC implementation.

Preliminaries
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[3] Baldassi et al. Subdominant dense clusters allow for simple learning and high computational 
performance in neural networks with discrete synapses. Physical review letters, 2015.
[4] Welling et al. Bayesian learning via stochastic gradient Langevin dynamics. ICML 2011.



• Original posterior: multi-modal, hard 
to sample from

• Flat posterior: fewer modes, 
smooth, easy to sample from

• Flat posterior is computed by the 
local entropy.

Method: Flat Posterior
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• An auxiliary variable θa to eliminate 
the integral computation

• For θ, its gradient direction is modified 
towards flat modes

Method: Sampling
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Method: Sampling
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• Inference: Bayesian model averaging



Theoretical Analysis: Convergence Bound
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Theorem (informal): Entropy-MCMC converges 
faster than Entropy-SGD and Entropy-SGLD in 
terms of 2-Wasserstein distance, due to the 
removal of nested Markov chains.



Experiments: Synthetic Examples
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• One sharp mode and one flat mode



Experiments: Logistic Regression
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• Entropy-MCMC converges the fastest



Experiments: Hessian Eigenspectrum
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• Lower Hessian eigenvalues indicate more flatness

X-axis :  eigenvalues
Y-axis :  frequency



Experiments: Interpolation
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• The mode discovered by Entropy-MCMC is flatter than others



Experiments: Image Classification
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Experiments: OOD detection
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• Predictive uncertainty
• Good characterization of posterior leads to good OOD detection



Conclusion

1. Sampling from the flat basins can improve the 
generalization of MCMC samples.

2. The proposed joint posterior distribution can eliminate the 
need for integral computation.

3. Entropy-MCMC can effectively find flat modes and achieve 
promising empirical results.
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Thank You!
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