Entropy-MCMC: Sampling from Flat Basins with Ease

Bolian Li, Ruqi Zhang

Department of Computer Science Purdue University

Introduction: Loss/Energy Landscape

• Empirical observation: Flat minima generalize better.^[1]

(a) without skip connections

(b) with skip connections

2

[1] Keskar et al. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR 2017.[2] Li et al. Visualizing the Loss Landscape of Neural Nets. NeurIPS 2018.

Introduction: Motivation

- Energy landscape of DNNs is highly multi-modal.
- Not practical to sample from all modes.
- Flat modes generalize better.
- No MCMC methods consider flat minima before.

Preliminaries

Local entropy^[3]: $\mathcal{F}(\boldsymbol{\theta};\eta) = \log \int_{\boldsymbol{\Theta}} \exp\left\{-f(\boldsymbol{\theta}') - \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|^2\right\} d\boldsymbol{\theta}'$

- Averaged energy within a local region.
- High local entropy indicates flat regions with low energy values.
- The main objective of Entropy-MCMC.

Stochastic gradient Langevin dynamics (SGLD)^[4]:

- A standard MCMC algorithm.
- The backbone of Entropy-MCMC implementation.

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} U_{\boldsymbol{\Xi}}(\boldsymbol{\theta}) + \sqrt{2\alpha} \cdot \boldsymbol{\epsilon}$$

[3] Baldassi et al. Subdominant dense clusters allow for simple learning and high computational performance in neural networks with discrete synapses. Physical review letters, 2015.[4] Welling et al. Bayesian learning via stochastic gradient Langevin dynamics. ICML 2011.

Method: Flat Posterior

 Original posterior: multi-modal, hard to sample from

 $p(\boldsymbol{\theta}|\mathcal{D}) \propto \exp(-f(\boldsymbol{\theta}))$

• Flat posterior: fewer modes,
smooth, easy to sample from
$$p(\theta_a | \mathcal{D}) \propto \exp \mathcal{F}(\theta_a; \eta) = \int_{\Theta} \exp \left\{ -f(\theta) - \frac{1}{2\eta} \|\theta - \theta_a\|^2 \right\} d\theta$$

• Flat posterior is computed by the local entropy.

Method: Sampling

 An auxiliary variable θ_a to eliminate the integral computation

$$p(\boldsymbol{\theta}_{a}|\mathcal{D}) \propto \exp \mathcal{F}(\boldsymbol{\theta}_{a};\eta) = \int_{\boldsymbol{\Theta}} \exp\left\{-f(\boldsymbol{\theta}) - \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_{a}\|^{2}\right\} d\boldsymbol{\theta}$$
$$p(\widetilde{\boldsymbol{\theta}}|\mathcal{D}) = p(\boldsymbol{\theta}, \boldsymbol{\theta}_{a}|\mathcal{D}) \propto \exp\left\{-f(\boldsymbol{\theta}) - \frac{1}{2\eta} \|\boldsymbol{\theta} - \boldsymbol{\theta}_{a}\|^{2}\right\}$$

 For θ, its gradient direction is modified towards flat modes

$$\nabla_{\widetilde{\boldsymbol{\theta}}} U(\widetilde{\boldsymbol{\theta}}) = \left[\begin{array}{c} \nabla_{\boldsymbol{\theta}} U(\widetilde{\boldsymbol{\theta}}) \\ \nabla_{\boldsymbol{\theta}_a} U(\widetilde{\boldsymbol{\theta}}) \end{array} \right] = \left[\begin{array}{c} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) + \frac{1}{\eta} (\boldsymbol{\theta} - \boldsymbol{\theta}_a) \\ \frac{1}{\eta} (\boldsymbol{\theta}_a - \boldsymbol{\theta}) \end{array} \right]$$

Method: Sampling

Algorithm 1: Entropy-MCMC **Inputs:** The model parameter $\theta \in \Theta$, guiding variable $\theta_a \in \Theta$, and dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$; **Results:** Collected samples $\mathcal{S} \subset \Theta$; $\boldsymbol{\theta}_a \leftarrow \boldsymbol{\theta}, \mathcal{S} \leftarrow \emptyset;$ /* Initialize */ for each iteration do $\Xi \leftarrow$ A mini-batch sampled from \mathcal{D} ; $U_{\Xi} \leftarrow -\log p(\Xi|\theta) - \log p(\theta) + \frac{1}{2\eta} \|\theta - \theta_a\|^2;$ $\theta \leftarrow \theta - \alpha \nabla_{\theta} U_{\Xi} + \sqrt{2\alpha} \cdot \epsilon_1;$ $\theta_a \leftarrow \theta_a - \alpha \nabla_{\theta_a} U_{\Xi} + \sqrt{2\alpha} \cdot \epsilon_2;$ $/\star \epsilon_1, \epsilon_2 \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \star /$ if after burn-in then $| \mathcal{S} \leftarrow \mathcal{S} \cup \{\boldsymbol{\theta}, \boldsymbol{\theta}_a\};$ /* Collect samples */ end end

Inference: Bayesian model averaging

Theoretical Analysis: Convergence Bound

Theorem (informal): Entropy-MCMC converges *faster* than Entropy-SGD and Entropy-SGLD in terms of **2-Wasserstein distance**, due to the removal of **nested Markov chains**.

Experiments: Synthetic Examples

• One sharp mode and one flat mode

Experiments: Logistic Regression

• Entropy-MCMC converges the fastest

Experiments: Hessian Eigenspectrum

• Lower Hessian eigenvalues indicate more flatness

X-axis: eigenvalues Y-axis: frequency

Experiments: Interpolation

• The mode discovered by Entropy-MCMC is flatter than others

Experiments: Image Classification

(a) CIFAR10 and CIFAR100

Method	CIF	AR10	CIFAR100		
Wiethou	ACC (%) ↑	NLL 🗸	ACC (%) ↑	NLL↓	
SGD	94.87 ± 0.04	0.205 ± 0.015	76.49 ± 0.27	0.935 ± 0.021	
Entropy-SGD	95.11 ± 0.09	0.184 ± 0.020	77.45 ± 0.03	0.895 ± 0.009	
SÂM	95.25 ± 0.12	0.166 ± 0.005	78.41 ± 0.22	0.876 ± 0.007	
bSAM	95.53 ± 0.09	0.165 ± 0.002	78.92 ± 0.25	0.870 ± 0.005	
SGLD	95.47 ± 0.11	0.167 ± 0.011	78.79 ± 0.35	0.854 ± 0.031	
Entropy-SGLD	94.46 ± 0.24	0.194 ± 0.020	77.98 ± 0.39	0.897 ± 0.027	
EMCMC	95.69 ± 0.06	0.162 ± 0.002	79.16 ± 0.07	0.840 ± 0.004	

(b) Corrupted CIFAR (ACC (%) \uparrow)

(c) ImageNet

Severity	1	2	3	4	5	Metric	$ \text{NLL}\downarrow $	Top-1 (%) ↑	Top-5 (%) ↑
SGD	88.43	82.43	76.20	67.93	55.81	SGD	0.960	76.046	92.776
SGLD	88.61	82.46	76.49	69.19	56.98	SGLD	0.921	76.676	93.174
EMCMC	88.87	83.27	77.44	70.31	58.17	EMCMC	0.895	77.096	93.424

Experiments: OOD detection

- Predictive uncertainty
- Good characterization of posterior leads to good OOD detection

Method	CIFAR10	-SVHN	CIFAR100-SVHN		
wicthou	AUROC (%) \uparrow	AUPR (%) \uparrow	AUROC (%) ↑	AUPR (%) ↑	
SGD	98.30	$\boldsymbol{99.24}$	71.96	84.08	
Entropy-SGD	98.71	99.37	79.15	86.92	
SÂM	94.23	95.67	74.56	84.61	
SGLD	97.66	98.64	72.51	83.35	
Entropy-SGLD	90.07	91.80	71.83	82.89	
EŃĊMC	98.15	99.04	81.14	87.18	

Conclusion

- 1. Sampling from the flat basins can improve the generalization of MCMC samples.
- 2. The proposed joint posterior distribution can eliminate the need for integral computation.
- 3. Entropy-MCMC can effectively find flat modes and achieve promising empirical results.

Thank You!