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Overview of Contributions

» We propose the information retention principle that favors using as
much relevant information as possible in supervised learning

» We develop a three-stage framework named InfoR-LSF for
Information retention via learning supplemental features
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Motivation

In contrast to the information bottleneck(IB) principle that ignores as
many details of the input, we propose Information Retention: it is
preferable to keep as much relevant information as possible in use

when making predictions.

Information Bottleneck Information Retention

* suppress relevant but » keep as much relevant
redundant features information as possible



Motivation

We use a simple example to illustrate the motivation.

» For training, the label y can be perfectly
predicted by using the feature f; = x; + x,,

I

| 5

e

P

Y

partially predicted by f, = x5 and f; = x4.

» However, taking f, or f; into consideration
will not bring any lifting in predictive ability.

» For atestdata [x; =1,x, =3,x3=1,x, =
2], fi =4 Is unseen, however, f, and
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f3 can deal with this situation.



The Proposed Method - InfoR-LSF

InfoR-LSF contains three stages:
» The first stage: initial training of mainline features
» The second stage: saliency erasing from inputs

» The third stage: joint training of mainline and supplemental features



Training of Mainline Features

At the first stage, the task is to train an initial mainline features z,,



Training of Mainline Features

At the first stage, the task is to train an initial mainline features z,,
» Maximize the mutual information between z,, and the label y

» Minimize the mutual information between z,, and input x (the term is
optional)
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Saliency Erasing

The objective of the second stage is to find and erase salient input
features with respect to mainline features z,, from input x



Saliency Erasing
The objective of the second stage is to find and erase salient input
features with respect to mainline features z,, from input x

» Here, we use the magnitude of the gradient of the loss with respect
to the input to determine the importance level of input features.
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Saliency Erasing

The objective of the second stage is to find and erase salient input
features with respect to mainline features z,, from input x

» Here, we use the magnitude of the gradient of the loss with respect
to the input to determine the importance level of input features.

Xst = topK ||V L(94(fo(x)),¥)|

TEX

» the next step iIs to perform MASK(-) operation on the raw input x to
get a modified input x’

x' = MASK(x) = x/x,;

* Replace token with [MASK] for text data and delete image patches for image data.



Joint-training of Mainline and Supplemental Features

The objective of the third stage is to simultaneously learn the mainline
features z,, and the supplemental features z;



Joint-training of Mainline and Supplemental Features

The objective of the third stage is to simultaneously learn the mainline
features z,, and the supplemental features z;

» Overall framework
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Joint-training of Mainline and Supplemental Features

The objective of the third stage is to simultaneously learn the mainline
features z,, and the supplemental features z;
» Mainline z,, training objective: (as same as the first stage)

maximize I(zp;;y) — B+ I1(zy;X)
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Joint-training of Mainline and Supplemental Features

The objective of the third stage is to simultaneously learn the mainline
features z,, and the supplemental features z;

» Supplemental z¢ training objective:

maximize I(zg;y)— B-1(zg;x) — a-I(zg;x|x’)
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« I(zg;x|x") represents the information zg contains which is unique to x and is not
predictable by observing x" and we tend to suppress the term



MI-based Loss Function

To compute the aforementioned optimization objective in practice, we
employ a variational encoding network to encode z,, and zg



MI-based Loss Function

To compute the aforementioned optimization objective in practice, we
employ a variational encoding network to encode z,, and zg

h Variational > _
—=>» Encoder zy ~ N(p,X)
94(:)

« 1z follows a parameterized Gaussian distribution so we can compute the Kullback-
Leibler (KL) divergence of z

 RT means reparameterization trick



MI-based Loss Function

We further estimate the upper and lower bounds of mutual information
based on the Gaussian distribution

[1] Alexander A Alemi, lan Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information bottleneck. In ICLR, 2017.



MI-based Loss Function

We further estimate the upper and lower bounds of mutual information
based on the Gaussian distribution

> Variational estimate of IB objectivelll(maximize I(z,;y) — B - 1(zy; X)):
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»where 1 (zy) ~ N(ugp, ) is prior distribution of zy,

[1] Alexander A Alemi, lan Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information bottleneck. In ICLR, 2017.



MI-based Loss Function

We further estimate the upper and lower bounds of mutual information
based on the Gaussian distribution

» Upper bound of I(zg; x|x") :

L1s = Ex x/[Dxv[pe o (2s|X)||pe.w (2]|x)]]

Note that the modified inputs x" are only used for the calculation of above loss
term



MI-based Loss Function

We further estimate the upper and lower bounds of mutual information
based on the Gaussian distribution

» Total loss of mainline features z,, and supplemental features z;:

L = Lvi(X,2Mm,0,¢) + Lvi(x,25,0,v¥) + o - Lig



Experiments

Benchmarks
» Dataset » Baselines
L it |l Dol o « |IFM a method which avoids shortcut
Image Classification ] . oo - )
CIFARI0 0 50K - [0K solutions by implicit feature modification
CIFAR100 10 SOK - 10K _ _ o
Sentiment Classification « FGSM a classic adversarial training
IMDB 2 20K 5K 25K : .
G S . e i method in computer vision
YELP-2 2 560K - 38K < - - .
o 5 cOK (OB 18K - VIB a variational approximation to Fhe
ifg—S ; ggi LIK ;éK information bottleneck by leveraging
AHiz0H-2. > 3600K - 400k the reparameterization trick
Amazon-5 S 3000K - 650K ) )
Semantic Textual Similarity « VIBERT a method implementing the
it 1 o N variational information bottleneck on

Regression

Appliance Energy Prediction 1 158K - 39K the pretl’ained BERT




In-domain Generalization on Supervised Tasks

We conduct experiments on both image and text classification tasks, as
well as text regression and tabular regression.



In-domain Generalization on Supervised Tasks

We conduct experiments on both image and text classification tasks, as

well as text regression and tabular regression.

» InfoR-LSF surpasses all competitors
under all settings of training data
sizes on image classification tasks.

» InfoR-LSF exhibits much notable
Improvements in low resource
conditions

Table I: CIFARI10 classification task accuracy under different train data size.

Train Data Size

Model 50 100 200 500 1000 2000 3000 50000
ResNet-18 172 22.6 31.1 404 489 633 742 95.1
IFM 17.1 224 315 421 518 658 75.1 946
FGSM 201 237 314 403 477 581 655 918
VIB 186 224 310 397 499 648 747 95.1
InfoR-LSE 203 245 321 421 528 673 762 952
A +3.1 +19 +1.0 +1.7 439 +40 +2.0 +0.1

Table 8: CIFAR100 classification task accuracy under different train data size.

Model

Train Data Size

1000 2000 3000 5000 10000 20000 50000
ResNet-18 1390 20.65 27.10 3808 5552 67.14 71.85
IFM 1404 2171 2846 3946 5672 67.19 77.53
FGSM 14.19 2056 2621 3480 4846 5960 71.66
VIB 1394 21.17 2785 3946 5630 6730 77.54
InfoR-LSF 1551 22.61 30.43 4332 5879 68.85 78.44
A +1.61 +196 +3.33 +524 +3.27 +1.71 +0.59




In-domain Generalization on Supervised Tasks

We conduct experiments on both image and text classification tasks, as
well as text regression and tabular regression.

> InfoR-LSF also works
for text classification
tasks.

Table 2: Text classification task accuracy under different train data size.

Train Data Size

Dataset. Model -z 100 200 500 1000
BERT 666022 779023 85.603) 87106 88.7(03)
IFM 66.1(22) 782(24) 85.6(0.7) 874(07) 88.7(04)

IMDB  VIBERT  689(25) 80.8(1.7) 86.1(0.6) 87.8(0.7) 88.8(0.4)
InfoR-LSF 755 (23) 83.0 (2.9) 869(0.4) 883 (0.5) 89.4(0.4)
A +8.9 +5.1 13 412 407
BERT 35.1(18) 3961 43107 51909 55607
IFM 35.7(25) 40.1(1.8) 434(1.0) 509(1.0) 555(0.7)

YELP VIBERT  377(12) 408(23) 448(22) 53.1(22) 554(0.6)
foR-LSF 396 (L.I) 414 (1.4) 449 (24) 53.6(0.6) 559 (03)
A 455 +1.8 +18 #17 +0.3




In-domain Generalization on Supervised Tasks

We conduct experiments on both image and text classification tasks, as
well as text regression and tabular regression.

Table 3: STS-B test set Pearson correlation coefficient under different train data sizes.

Train Data Size

Datanel.  Model 50 100 200 500 1000
> InfoR-LSF can also be BERT 722(3.2) 79.1(1.9) 838(0.8) 86.4(1.0) 87.5(0.2)
. _ IFM 723(3.1) 79.2(1.9) 84.0(09) 86.8(0.7) 87.6(0.2)
app“ed to regression STS-B VIBERT  74.4(2.8) 81.9(1.8) 85.0(04) 87.1(0.3) 88.4(0.3)
InfoR-LSF _ 75.0 (3.1) 82.4(2.0) 85.4(0.5) 87.5(0.6) 88.7(0.3)

tasks. A +2.8 +3.3 +1.6 +1.1 +1.2

Table 4: Coefficient of determination( 2%) of AEP
under different train data sizes.

Model

Train Data Size

10% 20% 50% 100%

MLP 0338 0456 0597  0.684

IFM 0.373 0469 0605  0.680

VIB 0.347 0471 0602  0.679

“InfoR-LSF  0.376 0483  0.618  0.691
A +0.038  +0.027  +0.021 +0.007




Out-of-domain Performance

We conduct experiments on text classification tasks to evaluate out-of-
domain performance of InfoR-LSF

Table 5: Test accuracy of models transferring to new target datasets. All models are trained on YELP
and evaluated linear readout on the target datasets. A are the absolute differences with BERT.

Model Target Dataset

YELP YELP-2 IMDB SST-2 SST-5 MR Amazon-2 Amazon-5
BERT 65.81 0495 88.24 86.54 44.88 80.70 81.59 54.53
VIBERT 66.00 0587 88.05 8390 4475 81.20 81.81 56.05
InfoR-LSF  66.31 95.89 88.55 88.19 46.28 82.00 83.03 57.43
A +0.5 +094 +0.31 +1.65 +1.4 +1.3 +1.44 +2.9

» On all target tasks, InfoR-LSF consistently achieves the highest
Improvement



Conclusion

« We introduce the principle of information retention.

« We design a three-stage supervised learning framework named
InfoR-LSF for information retention by jointly learning the mainline
and supplemental features.

* InfoR-LSF performs well on tasks involving multiple different data
types, including both classification and regression.



