Information Retention via Learning Supplemental Features

Zhipeng Xie and Yahe Li

School of Computer Science, Fudan University

ICLR, May 2024

Overview of Contributions

- We propose the information retention principle that favors using as much relevant information as possible in supervised learning
- We develop a three-stage framework named InfoR-LSF for information retention via learning supplemental features

Motivation

In contrast to the information bottleneck(IB) principle that ignores as many details of the input, we propose *Information Retention*: it is preferable to keep as much relevant information as possible in use when making predictions.

Information Bottleneck

 suppress relevant but redundant features **Information Retention**

 keep as much relevant information as possible

Motivation

We use a simple example to illustrate the motivation.

- > For training, the label y can be perfectly predicted by using the feature $f_1 = x_1 + x_2$, partially predicted by $f_2 = x_3$ and $f_3 = x_4$.
- > However, taking f_2 or f_3 into consideration will not bring any lifting in predictive ability.
- For a test data $[x_1 = 1, x_2 = 3, x_3 = 1, x_4 = 2]$, $f_1 = 4$ is unseen, however, f_2 and f_3 can deal with this situation.

x_1	x_2	x_3	x_4	y
1	1	1	2	True
1	1	1	2	True
0	2	2	2	True
0	3	2	2	False
1	2	2	1	False
0	3	2	1	False

The Proposed Method - InfoR-LSF

InfoR-LSF contains three stages:

> The first stage: initial training of mainline features

> The second stage: saliency erasing from inputs

> The third stage: joint training of mainline and supplemental features

Training of Mainline Features

At the first stage, the task is to train an initial mainline features z_M

Training of Mainline Features

At the first stage, the task is to train an initial mainline features z_M

- > Maximize the mutual information between z_M and the label y
- > Minimize the mutual information between z_M and input x (the term is optional)

$$(\mathbf{x}, \mathbf{y}) \longrightarrow \begin{bmatrix} \text{backbone} & \mathbf{h} \\ \text{network} \\ f_{\theta}(\cdot) \end{bmatrix} \xrightarrow{\mathbf{h}} \begin{bmatrix} \mathbf{z}_{M}; \mathbf{y} \\ \forall \text{ariational} \\ \text{Encoder} \\ g_{\phi}(\cdot) \end{bmatrix} \xrightarrow{\mu, \Sigma} \xrightarrow{\mathbb{R}} \mathbf{z}_{M} \sim \mathcal{N}(\mu, \Sigma)$$

Saliency Erasing

The objective of the second stage is to find and erase salient input features with respect to mainline features z_M from input x

Saliency Erasing

The objective of the second stage is to find and erase salient input features with respect to mainline features z_M from input x

Here, we use the magnitude of the gradient of the loss with respect to the input to determine the importance level of input features.

$$\mathbf{x}_{\rm sf} = \underset{x \in \mathbf{x}}{\rm topK} ||\nabla_x \mathcal{L}(g_\phi(f_\theta(\mathbf{x})), \mathbf{y})||$$

Saliency Erasing

The objective of the second stage is to find and erase salient input features with respect to mainline features z_M from input x

Here, we use the magnitude of the gradient of the loss with respect to the input to determine the importance level of input features.

$$\mathbf{x}_{sf} = \underset{x \in \mathbf{x}}{topK} ||\nabla_x \mathcal{L}(g_\phi(f_\theta(\mathbf{x})), \mathbf{y})||$$

the next step is to perform MASK(·) operation on the raw input x to get a modified input x'

$$\mathbf{x}' = \mathrm{MASK}(\mathbf{x}) = \mathbf{x}/_{\mathbf{x}_{\mathrm{sf}}}$$

• Replace token with [MASK] for text data and delete image patches for image data.

The objective of the third stage is to simultaneously learn the mainline features z_M and the supplemental features z_S

The objective of the third stage is to simultaneously learn the mainline features z_M and the supplemental features z_S

Overall framework

The objective of the third stage is to simultaneously learn the mainline features z_M and the supplemental features z_S

> Mainline z_M training objective: (as same as the first stage)

maximize $I(\mathbf{z}_M; \mathbf{y}) - \beta \cdot I(\mathbf{z}_M; \mathbf{x})$

The objective of the third stage is to simultaneously learn the mainline features z_M and the supplemental features z_S

> Supplemental z_s training objective:

$$ext{maximize} \quad I(\mathbf{z}_S; \mathbf{y}) - eta \cdot I(\mathbf{z}_S; \mathbf{x}) - lpha \cdot I(\mathbf{z}_S; \mathbf{x} | \mathbf{x}')$$

• $I(\mathbf{z}_S; \mathbf{x} | \mathbf{x}')$ represents the information \mathbf{z}_S contains which is unique to \mathbf{x} and is not predictable by observing \mathbf{x}' and we tend to suppress the term

To compute the aforementioned optimization objective in practice, we employ a variational encoding network to encode z_M and z_S

To compute the aforementioned optimization objective in practice, we employ a variational encoding network to encode z_M and z_S

$$\begin{array}{c|c} \mathbf{h} & \text{Variational} \\ \text{Encoder} \\ g_{\phi}(\cdot) & \mathbf{z}_{M} \\ \end{array} \xrightarrow{\mathcal{P}_{1}} \mathbf{z}_{M} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$$

- z follows a parameterized Gaussian distribution so we can compute the Kullback-Leibler (KL) divergence of z
- RT means reparameterization trick

We further estimate the upper and lower bounds of mutual information based on the Gaussian distribution

We further estimate the upper and lower bounds of mutual information based on the Gaussian distribution

> Variational estimate of IB objective^[1](maximize $I(\mathbf{z}_M; \mathbf{y}) - \beta \cdot I(\mathbf{z}_M; \mathbf{x})$):

$$\mathcal{L}_{\text{VIB}}(\mathbf{x}, \mathbf{z}_M, \theta, \phi) = \mathbb{E}_{\mathbf{x}} [\mathbb{E}_{\mathbf{z}_M \sim p_{\theta, \phi}(\mathbf{z}_M | \mathbf{x})} [-\log q(\mathbf{y} | \mathbf{z}_M)] + \beta \cdot D_{\text{KL}} [p_{\theta, \phi}(\mathbf{z}_M | \mathbf{x}) || r_{\phi}(\mathbf{z}_M)]]$$

• where $r_{\phi}(\mathbf{z}_M) \sim N(\mu_{\phi}, \Sigma_{\phi})$ is prior distribution of \mathbf{z}_M

[1] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information bottleneck. In ICLR, 2017.

We further estimate the upper and lower bounds of mutual information based on the Gaussian distribution

> Upper bound of $I(\mathbf{z}_S; \mathbf{x} | \mathbf{x}')$:

$$\mathcal{L}_{\rm IS} = \mathbb{E}_{\mathbf{x},\mathbf{x}'}[D_{\rm KL}[p_{\theta,\psi}(\mathbf{z}_S|\mathbf{x})||p_{\theta,\psi}(\mathbf{z}'_S|\mathbf{x}')]]$$

- Note that the modified inputs \mathbf{x}' are only used for the calculation of above loss term

We further estimate the upper and lower bounds of mutual information based on the Gaussian distribution

 \succ Total loss of mainline features z_M and supplemental features z_S :

$$\mathcal{L} = \mathcal{L}_{\text{VIB}}(\mathbf{x}, \mathbf{z}_M, \theta, \phi) + \mathcal{L}_{\text{VIB}}(\mathbf{x}, \mathbf{z}_S, \theta, \psi) + \alpha \cdot \mathcal{L}_{\text{IS}}$$

Experiments

Benchmarks

Dataset

Dataset	#Lables	Train	Valid	Test						
Image Classification										
CIFAR10	10	50K	8 <u>-</u> 2	10K						
CIFAR100	10	50K	-	10K						
Sentime	nt Classifica	tion								
IMDB	2	20K	5K	25K						
YELP	5	62.5K	7.8K	8.7K						
YELP-2	2	560K		38K						
SST-2	2	6.9K	0.9K	1.8K						
SST-5	5	8.5K	1.1K	2.2K						
MR	2	8.7K	-	2K						
Amazon-2	2	3600K	3 	400k						
Amazon-5	5	3000K	2 	650K						
Semantic	Textual Sim	ilarity								
STS-B	1	5.8K	1.5K	1.4K						
R	egression									
Appliance Energy Prediction	1	15.8K)(H	3.9K						

Baselines

- **IFM** a method which avoids shortcut solutions by implicit feature modification
- **FGSM** a classic adversarial training method in computer vision
- **VIB** a variational approximation to the information bottleneck by leveraging the reparameterization trick
- VIBERT a method implementing the variational information bottleneck on the pretrained BERT

We conduct experiments on both image and text classification tasks, as well as text regression and tabular regression.

We conduct experiments on both image and text classification tasks, as well as text regression and tabular regression.

- InfoR-LSF surpasses all competitors under all settings of training data sizes on image classification tasks.
- InfoR-LSF exhibits much notable improvements in low resource conditions

Model	Train Data Size								
	50	100	200	500	1000	2000	3000	50000	
ResNet-18	17.2	22.6	31.1	40.4	48.9	63.3	74.2	95.1	
IFM	17.1	22.4	31.5	42.1	51.8	65.8	75.1	94.6	
FGSM	20.1	23.7	31.4	40.3	47.7	58.1	65.5	91.8	
VIB	18.6	22.4	31.0	39.7	49.9	64.8	74.7	95.1	
InfoR-LSF	20.3	24.5	32.1	42.1	52.8	67.3	76.2	95.2	
Δ	+3.1	+1.9	+1.0	+1.7	+3.9	+4.0	+2.0	+0.1	

Table 1: CIFAR10 classification task accuracy under different train data size.

Table 8: CIFAR100 classification task accuracy under different train data size.

Model	Train Data Size							
	1000	2000	3000	5000	10000	20000	50000	
ResNet-18	13.90	20.65	27.10	38.08	55.52	67.14	77.85	
IFM	14.04	21.71	28.46	39.46	56.72	67.19	77.53	
FGSM	14.19	20.56	26.21	34.80	48.46	59.60	71.66	
VIB	13.94	21.17	27.85	39.46	56.30	67.30	77.54	
InfoR-LSF	15.51	22.61	30.43	43.32	58.79	68.85	78.44	
Δ	+1.61	+1.96	+3.33	+5.24	+3.27	+1.71	+0.59	

We conduct experiments on both image and text classification tasks, as well as text regression and tabular regression.

InfoR-LSF also works for text classification tasks.

Detect	Madal	Train Data Size						
Dataset	wiodei	50	100	200	500	1000		
	BERT	66.6 (2.2)	77.9 (2.3)	85.6 (0.5)	87.1 (0.6)	88.7 (0.3)		
	IFM	66.1 (2.2)	78.2 (2.4)	85.6 (0.7)	87.4 (0.7)	88.7 (0.4)		
IMDB	VIBERT	68.9 (2.5)	80.8 (1.7)	86.1 (0.6)	87.8 (0.7)	88.8 (0.4)		
	InfoR-LSF	75.5 (2.3)	83.0 (2.9)	86.9 (0.4)	88.3 (0.5)	89.4 (0.4)		
	Δ	+8.9	+5.1	+1.3	+1.2	+0.7		
	BERT	35.1 (1.8)	39.6 (2.1)	43.1 (1.7)	51.9 (0.9)	55.6 (0.7)		
	IFM	35.7 (2.5)	40.1 (1.8)	43.4 (1.0)	50.9 (1.0)	55.5 (0.7)		
YELP	VIBERT	37.7 (1.2)	40.8 (2.3)	44.8 (2.2)	53.1 (2.2)	55.4 (0.6)		
	InfoR-LSF	39.6 (1.1)	41.4 (1.4)	44.9 (2.4)	53.6 (0.6)	55.9 (0.3)		
	Δ	+4.5	+1.8	+1.8	+1.7	+0.3		

Table 2: Text classification task accuracy under different train data size.

We conduct experiments on both image and text classification tasks, as well as text regression and tabular regression.

InfoR-LSF can also be applied to regression tasks.

Dataset	Madal	Train Data Size						
	Model	50	100	200	500	1000		
	BERT	72.2 (3.2)	79.1 (1.9)	83.8 (0.8)	86.4 (1.0)	87.5 (0.2)		
	IFM	72.3 (3.1)	79.2 (1.9)	84.0 (0.9)	86.8 (0.7)	87.6 (0.2)		
STS-B	VIBERT	74.4 (2.8)	81.9 (1.8)	85.0 (0.4)	87.1 (0.3)	88.4 (0.3)		
	InfoR-LSF	75.0 (3.1)	82.4 (2.0)	85.4 (0.5)	87.5 (0.6)	88.7 (0.3)		
	Δ	+2.8	+3.3	+1.6	+1.1	+1.2		

Table 3: STS-B test set Pearson correlation coefficient under different train data sizes.

Table 4: Coefficient of determination(R^2) of AEP under different train data sizes.

Madal	Train Data Size						
Model	10%	20%	50%	100%			
MLP	0.338	0.456	0.597	0.684			
IFM	0.373	0.469	0.605	0.680			
VIB	0.347	0.471	0.602	0.679			
InfoR-LSF	0.376	0.483	0.618	0.691			
Δ	+0.038	+0.027	+0.021	+0.007			

Out-of-domain Performance

We conduct experiments on text classification tasks to evaluate out-ofdomain performance of InfoR-LSF

Table 5: Test accuracy of models transferring to new target datasets. All models are trained on YELP and evaluated linear readout on the target datasets. Δ are the absolute differences with BERT.

Model		Target Dataset							
WIUUEI	YELP	YELP-2	IMDB	SST-2	SST-5	MR	Amazon-2	Amazon-5	
BERT	65.81	94.95	88.24	86.54	44.88	80.70	81.59	54.53	
VIBERT	66.00	95.87	88.05	83.90	44.75	81.20	81.81	56.05	
InfoR-LSF	66.31	95.89	88.55	88.19	46.28	82.00	83.03	57.43	
Δ	+0.5	+0.94	+0.31	+1.65	+1.4	+1.3	+1.44	+2.9	

On all target tasks, InfoR-LSF consistently achieves the highest improvement

Conclusion

- We introduce the principle of information retention.
- We design a three-stage supervised learning framework named InfoR-LSF for information retention by jointly learning the mainline and supplemental features.
- InfoR-LSF performs well on tasks involving multiple different data types, including both classification and regression.