AT
g

4: The Twelfth International Conference on Learning Representations

AdaMerging: Adaptive Model

Merging for Multi-Task Learning

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo,
Xingwel Wang, Dacheng Tao

JOT 555 f%




01

Background



Introduction to MTL

Goal of MTL : to train a single model collaboratively using data from multiple tasks
to enable knowledge transfer.
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MTL is widely used in CV, NLP, RecSys, etc.



Introduction to MTL

The core steps of traditional MTL include:

« Collect training data for the multi-tasks
* Design a MTL architecture

«  Optimize the parameters

Input MTL model Prediction

Task 1
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“Learn from Raw Data”



State-of-the-art MTL solution gL |

However, there are two problems with using raw data for MTL:

€ High data management/storage costs
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Learn from Raw Data

“Instead, can we learn
from well-trained models?”



State-of-the-art MTL solution

Recent research (called Task Arithmetic) has shown that multi-task learning
can be performed by merging independently trained models.
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Example: building a
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multi-task model

(a) A task vector is obtained by subtracting the weights of a pre-trained model from
the weights of the same model after fine-tuning.
(b) Adding task vectors together perform the multi-task learning.

ITharco, Gabriel, et al. "Editing models with task arithmetic." ICLR, 2023.



State-of-the-art MTL solution

Based on task vectors, TIES-Merging further removes redundant parameter
updating and solves parameter symbol conflicts to alleviate the interference of

model merging.
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Yadav, Prateek, et al. "Ties-Merging: Resolving interference when merging models." NeurIPS, 2023.



State-of-the-art MTL solution

Table 1: Multi-task performance when merging ViT-B/32 models on eight tasks.

Method | SUN397 Cars RESISC45 EuwroSAT SVHN GTSRE MNIST DTD | Avg Ace

Pretrained 62.3 39.7 60.7 45.5 314 32.6 48.5 43.8 48.0

Individual 75.3 7.7 96.1 99.7 97.5 08.7 99.7 79.4 90.5

Traditional MTL 739 744 93.9 98.2 95.8 08.9 99.5 71.9 88.9

Weight Averaging 65.3 634 71.4 71.7 64.2 52.8 87.5 50.1 65.8

Fisher Merging (Matena & Raftel, 2022) 68.6 69.2 70.7 66.4 729 51.1 87.9 59.9 68.3 Gap
RegMean (Jin et al., 2023) 65.3 63.5 13.6 78.6 78.1 67.4 93.7 52.0 T1.8

Task Arithmetic (llharco et al., 2023) 532 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1

Ties-Merging (Yadav et al., 2023) 59.8 58.6 70.7 79.7 £6.2 72.1 98.3 54.2 724

However, we observe that there is still a large performance gap between the

task vector-based model merging approach and the traditional MTL.

ITharco, Gabriel, et al. "Editing models with task arithmetic." ICLR, 2023.

Yadav, Prateek, et al. "Ties-Merging: Resolving interference when merging models." NeurlPS, 2023.
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AdaMerging: Adaptive Model Merging
for Multi-Task Learning.

ICLR, 2024.



Our AdaMerging

A critical observation in the analysis of task vector-based MTL methods is the
significance of the merging coefficient A associated with the task vector.

- a) Task Vectors b) Task Arithmetic
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(b) Task Arithmetic (Ilharco et al., 2023) The impact of coefficient A on the average

accuracy of various MTL methods on eight tasks.

ITharco, Gabriel, et al. "Editing models with task arithmetic." ICLR, 2023.



Our AdaMerging REEY.

Further, one important question is:

Question: Is it reasonable for all task vectors to share a merge coefficient? And,
Is it reasonable for all layers of a task vector to share a merge coefficient?

We think the answer is "no".

Task vectors/layers differ greatly and it is not enough to share a single
coefficient.



Our AdaMerging

We propose Task-wise model merging and Layer-wise model merging.

a) Task Vectors b) Task Arithmetic ~ | c) Task-wise AdaMerging .  d) Layer-wise AdaMerging
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Our AdaMerging

We propose Task-wise AdaMerging for multi-task model merging .

a) Task Vectors b) Task Arithmetic . ¢) Task-wise AdaMerging d) Layer-wise AdaMerging
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(C) Task-wise AdaMerging for MTL, which learns a different merging coefficient A, to each
task vector T}, (k ¢ {A, B}).



Our AdaMerging

We propose Layer-wise AdaMerging for multi-task model merging .

a) Task Vectors b) Task Arithmetic c¢) Task-wise AdaMerging d) Layer-wise AdaMerging
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(d) Layer-wise AdaMerging for MTL, which learns a different merging coefficient AL to
each layer ] (I ¢ {1, 2}) of the task vector T, (k € {A, B}).
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Critical Challenge: How to optimize merging coefficients?

Because we don't have the raw training data for the multiple tasks.

Inspired by test-time adaptation (Wang, Dequan, et al), we use entropy
minimization of unlabeled test data as a proxy objective function.

Wang, Dequan, et al. "Tent: Fully test-time adaptation by entropy minimization." ICLR, 2021.



Our AdaMerging

Cross-Entropy Loss

H(y;, 9;) = — pr(yi,c) logp(f}i’c)
Shannon Entropy:

H(g,) = -3¢ p( logp(y;,,) WP Shannon entropy depends only on the output
of the model.

where

» y;: Real Label (One-hot)

» ij;: The prediction probability of the model for each class

¢ (" Total class number

How can we verify that entropy minimization is a reasonable surrogate
objective in model merging?



Our AdaMerging
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Average Loss
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We first group the samples according
to the entropy of each sample (a total

of 11 groups), and then count the true
cross entropy loss in each group.

Entropy

& Evidence 1: Samples with low entropy also have low losses.



Our AdaMerging “

1.0

0.8 We also directly calculated the

Spearman correlation coefficient of
entropy and prediction loss.
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Spearman Correlation Coefficient

€ Evidence 2: We observe a higher average correlation between them.



Our AdaMerging

Optimization Objective

Based on the above verification, we take entropy minimization as the optimization
proxy goal of the model merging coefficient in our AdaMerging.

mln Z Z H(foy 7. () , where Oy —Qpre—l-Z)\ka,

where B, represents a batch of unlabeled test samples sampled in task k.



Experiments

® Significantly Higher MTL Performance.
Table 1: Multi-task performance when merging ViT-B/32 models on eight tasks.

Method | SUN397 Cars RESISC45 EuroSAT SVHN GTSEB  MNIST DTD | Aveg Ace
Pretrained 62.3 59.7 60.7 45.5 314 326 48.5 438 48.0
Individual 75.3 TLT 6.1 00,7 97.5 08.7 997 794 90.5
Traditional MTL 73.9 74.4 93.9 08.2 05.% 8.0 99.5 779 489
Weight Averaging 65.3 63.4 71.4 T 64.2 52.8 B7.5 50.1 65.8
Fisher Merging (Matena & Raffel, 2022) 6R.6 69.2 70.7 66.4 72.9 51.1 B7.9 59.9 68.3
RegMean (Jin et al., 2023) 6h3.3 Hh3.5 75.6 78.6 78.1 67.4 03.7 52.0 71.8 We verif-y- that the
Task Arithmetic (Ilharco et al., 2023) 55.2 54.9 66.7 789 80.2 697 97.3 50.4 69.1 .
Ties Merging (vdayetal, 207 | 98 386 707 797 862 _ 71 _ 83 w2| pe  Proposed AdaMerging
| Task-wise AdaMerging (Ours) 580 532 688 857 811 s44 924 48| 7.1 - method significantly
. Task-wise AdaMerging++ (Ours) 60.8 56.9 73.1 834 87.3 8524 95.7 50.1 737 s gl
- Layer-wise AdaMerging (Ours) 645 681 792 938 870 919 975 591 | 80.1 I outperforms existing
L Layer-wise AdaMerging++ (Ours) 66.6 68.3 B2.2 04.2 89.6 89.0 08.3 6.6 81.1 mOde]. merging methOds
"7 " Table 2: Multi-task performance when merging ViT-L/14 models on eight tasks. in performance
Method | SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD | Avg Acc
Pretrained 66.8 7 o 71.0 59.9 58.4 50.5 76.3 253 64.5
Individual 82.3 924 97.4 100 08.1 0o 99.7 84.1 04.2
Traditional MTL B0.8 9.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5
Weight Averaging 72.1 81.6 B2.6 91.9 78.2 70.7 97.1 62.8 79.6
Fisher Merging (Matena & Raffel, 2022) 69.2 88.6 R7.5 93.5 80.6 748 93.3 70,0 822
RegMean (Jin et al., 2023) 73.3 81.8 B6.1 07.0 8.0 842 08.5 60.8 83.7
Task Anthmetic (llharco et al., 2023) 739 82.1 86.6 04.1 87.9 86.7 98.9 65.6 84.5
—Ji¢s;Merging (Yadav.et al 2023) b =203 . B850 B3, 52 . 903 L. 835, ., 990, 688 | _860. I
: AdaMerging (Ours) 79.0 0.3 90.8 06.2 934 98.0 99.0 79.9 908 |
L AdaMerging++ (Ours) 79.4 90.3 91.6 07.4 93.4 97.5 99.0 79.2 91.0 .
- L] L] - L] L L] L - L] L L] L L] L] L] - L] L L] L L] - - L] L L] d




€ Substantially Improved Generalization.

We also compare the performance of AdaMerging and task vector-based
model merging methods (Task Arithmetic and Ties-Merging) on two sets of

unseen tasks. AdaMerging is significantly better.

Table 3: Generalization results on two unseen tasks when merging ViT-B/32 models on six tasks.

Seen Tasks

Unseen Tasks

Method | SUN397 Cars RESISC45 DTD SVHN GTSRB AvgAcc || MNIST EuroSAT Avg Acc :
Task Arithmetic (Ilharco et al., 2023) 63.3 62.4 73.1 57.8 84.6 80.4 70.6 1.2 46.2 61.7
Ties-Merging (Yadav et al., 2023) 67.8 66.2 112 56.7 A 70.9 69.3 75.9 433 59.6
AdaMerging (Ours) 65.2 65.9 88.5 61.1 92.2 91.5 774 84.0 56.1 70.0
AdaMerging++ (Ours) 68.2 67.6 86.3 63.6 92.6 89.8 78.0 83.9 53.5 68.7
Method | SUN397  Cars GTSRB EuroSAT DTD  MNIST AvgAcc | RESISC45 SVHN  Avg Acc I
Task Arithmetic (Ilharco et al., 2023) 64.0 64.0 722 87.7 57.0 95.7 739 | 523 44.9 51.1
Ties-Merging (Yadav et al., 2023) 68.0 67.1 67.7 78.4 56.5 92.8 71.8 58.7 49.2 53.9
AdaMerging (Ours) 67.1 67.8 94 8 94.4 59.6 98.2 80.3 50.2 60.9 53D
AdaMerging++ (Ours) 68.9 69.6 91.6 94.3 61.9 08.7 80.8

52.0

64.9

58.5




€ Visual analysis of merging coefficient
Different tasks/layers in AdaMerging learn different merge coefficients.

Table 5: Model merging coefficients {\; }{*_, change with respect to training steps on ViT-B/32.
Method | SUN397 Cars  RESISC45 EuwroSAT SVHN GTSRB MNIST DTD

0.2202 0.1413 0.2826 0.3284  0.2841 04003 0.1978 0.1692
03171  0.1698 0.4235 0.5198 04386 05803 0.2452 0.2885

Task-wise AdaMerging
Task-wise AdaMerging++

Figure 4: Learned model merging coefficients {\} } f;’ﬁ’ 1 of Layer-wise AdaMerging (Above) and

AdaMerging++ (Below) on ViT-B/32. The k-th row represents the k-th task vector, the [-th column
represents the [-th layer, and the intersection point represents the coefficient AL .

SUN39T - | [I | I 1.00
Cars - i
RESISCA5S - ] | J | 0.75
EuroSAT - ,

SVHN - I| 18 _ 0.50
GTSRB- | | | |
MNIST - i | I 'l| - = 0.25

DTD _I ! |I |i I I I [} 1 ] I ] 1 I ] I ] I [} 1 1 - ﬂﬂ'ﬂ
R T = r T ONE O T ONGO ST 0N D
SANAR ~ ERoaaNanE SNy
SUN397 - T W _ i 1.00
Cars - 3
RESISC45 - F | | | 0.75
EuroSAT - . | .

SWHN - I | 1 ] g | 0.50
GTSRB - | n | i |
MMNIST - | i : i ‘ 0.25

DD N |I |I: (| -I i = o I ] e e ey e i i i) =0.00
O OMNWYoTm MUOUOTOMOOTEOMNOOTOMNID DT MND
i HiERessesesdoganants 0
s



Thank you!



