

MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations

Hanlei Zhang*, Xin Wang*, Hua Xu, Qianrui Zhou, Kai Gao, Jianhua Su, Jinyue Zhao, Wenrui Li, Yanting Chen

Task: Multimodal Intent Recognition Leverage Multimodal Information (text, video, audio) to Recognize **Human Intentions in Conversations**

Fig 1. Examples from our MIntRec2.0 Dataset.

Challenges in the Literature

Disadvantages in Existing Multimodal Intent Resources:

- a. The dataset scale is small.
- b. There is a lack of multimodal context and multi-party information.
- c. Out-of-scope (OOS) utterances in multimodal conversations are neglected.

Datasets	#I	#U	Conv. Scenes	Conv. Type	OOS	Multi-Party	T	V	A
ATIS (Tür et al., 2010)	17	6,371	✓	Single-turn	Х	Х	✓	Х	Х
Snips (Coucke et al., 2018)	7	14,484	✓	Single-turn	X	×	✓	X	X
CLINC150 (Larson et al., 2019)	150	23,700	✓	Single-turn	✓	X	✓	X	Х
MDID (Kruk et al., 2019)	7	1,299	×	-	X	×	✓	✓	Х
Intentonomy (Jia et al., 2021)	28	14,455	X	-	X	X	X	✓	Х
MIntRec (Zhang et al., 2022a)	20	2,224	✓	Single-turn	X	X	✓	✓	✓
MIntRec2.0	30	15,040	✓	Multi-turn	✓	✓	✓	✓	✓

Tab 1. Comparison between Different Multimodal Intent Datasets.

The MIntRec2.0 Dataset

Key Features:

- a. Large scale: MIntRec: 2K→MIntRec2.0: 15K.
- b. Multiple speakers: 34 main characters from 3 TV series.
- c. Multi-turn conversations: Involves 30 intents and one OOS tag.
- d. Multimodal information: Text, video, and audio modalities.

Fig 2. In-scope and Out-of-scope Data Distribution.

Fig 3. Intent Distribution.

Benchmark Framework

Supports:

- a. Processing of multimodal information in both single-turn and multi-turn conversations.
- b. Various multimodal fusion methods.
- c. In-scope classification and out-of-scope detection.

Fig 4. A Pipeline of our Algorithm Framework for Multimodal Intent Recognition.

Experiments and Results

							m-scope		III-sco	pe + Out-c
	#D	#U	# U (In-scope)	#U (Out-of-scope)	Methods	ACC	WF1	WP	ACC	F1-OOS
ing ation ng	1,245 871 125 249	15,040 9,989 1,821 3,230	9,304 6,165 1,106 2,033	5,736 3,824 715 1,197		35.27 34.53	37.10	48.22 49.27	27.68 29.72	50.57 21.21 27.85 62.83
Tab 2 Data Splits of MIntDog 2 0					Humans-100		75.63		l	75.41

Tab 4. Performance of ChatGPT and humans

		In-scope Classification						In-scope + Out-of-scope Classification				
Train	Methods	F1	P	R	ACC	WF1	WP	F1-IS	ACC	F1-OOS	F1	
w/oOOS	TEXT MAG-BERT $\Delta({\rm MAG-BERT})$ MulT $\Delta({\rm MulT})$	51.60 55.17 3.57↑ 54.12 2.52↑	55.47 57.78 2.31↑ 58.02 2.55↑	51.31 55.10 3.79↑ 53.77 2.46↑	59.30 60.58 1.28↑ 60.66 1.36↑	58.01 59.68 1.67↑ 59.55 1.54↑	58.85 59.98 1.13↑ 60.12 1.27↑	43.37 46.48 3.11↑ 45.65 2.28↑	43.24 44.80 1.56↑ 46.14 2.90↑	30.40 34.03 3.63↑ 38.57 8.17↑	42.96 46.08 3.12↑ 45.42 2.46↑	
w OOS	$TEXT$ $MAG-BERT$ $\Delta(MAG-BERT)$ $MulT$ $\Delta(MulT)$	52.08 53.64 1.56↑ 52.72 0.64↑	54.57 54.84 0.27↑ 56.45 1.88↑	52.11 53.79 1.68↑ 52.56 0.45↑	59.99 60.12 0.13↑ 60.18 0.19↑	58.62 59.11 0.49↑ 58.82 0.20↑	58.65 58.83 0.18↑ 59.38 0.73↑	45.83 47.52 1.69↑ 46.88 1.05↑	55.61 56.20 0.59↑ 56.00 0.39↑	61.54 62.47 0.93↑ 61.66 0.12↑	46.34 48.00 1.66↑ 47.35 1.01↑	
w OOS	Context TEXT Context MAG-BERT Δ (Context MAG-BERT) Context MulT Δ (Context MulT)	53.61 53.89 0.28↑ 53.96 0.35↑	54.46 55.72 1.26↑ 54.91 0.45↑	54.10 54.21 0.11↑ 54.15 0.05↑	59.04 59.84 0.80↑ 59.48 0.44↑	58.69 59.41 0.72↑ 59.33 0.64↑	59.27 60.22 0.95↑ 60.04 0.77↑	46.42 46.74 0.32↑ 46.45 0.03↑	56.12 56.20 0.08↑ 56.07 0.05↓	63.56 62.52 1.04↓ 62.93 0.63↓	46.98 47.25 0.27↑ 46.98 0.00	

Findings:

Tab 5. Benchmark Baseline Results.

- a. Multimodal information can enhance in-scope classification and out-ofscope detection in single-turn conversations.
- b. Existing methods struggle to fully leverage multimodal contexts and out-of-scope utterances as prior knowledge.
- c. Humans can achieve significant improvements (over 30% accuracy) compared to ChatGPT in the same few-shot scenarios.

Resources and Contacts

Dataset for Multimodal Intent Recognition AND OUT-OF-SCOPE DETECTION IN CONVERSATIONS Hanlei Zhang¹ - Xin Wang^{1,2,5} - Hua Xu¹ - Qianrui Zhou¹ - Kai Gae² Jianhua Su^{1,2,5} - Jinyue Zhao^{1,2} - Wenrui Li¹ - Yanting Chen¹

Datasets and codes are Opensourced! Welcome stars and forks!

Hi! I am Hanlei Zhang, a fourth-year PhD candidate at Tsinghua University in Beijing, China.

- My research goal is to understand human intentions in real open-world and multimodal scenarios. I have led pioneering work in open intent detection, new intent discovery, and multimodal intent analysis, including the TEXTOIR platform and the MIntRec and MIntRec2.0 datasets.
- I have published seven first-author papers in top-tier AI conferences and journals, including ICLR, IEEE TKDE, ACL, AAAI, ACM MM, and IEEE/ACM TASLP, which have collectively received over 320 citations on Google Scholar.

I'm currently on the job market (expecting to graduate in June 202: Please do not hesitate to contact me via email at zhang-hl20@mails.tsinghua.edu.cn or through WeChat by scanning the QR code on the right.

