

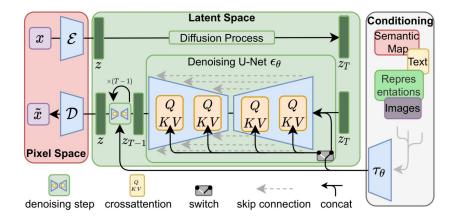
Twelfth International Conference on Learning Representations

Multi-Resolution Diffusion Models for Time Series Forecasting

Lifeng Shen, Weiyu Chen, James T. Kwok

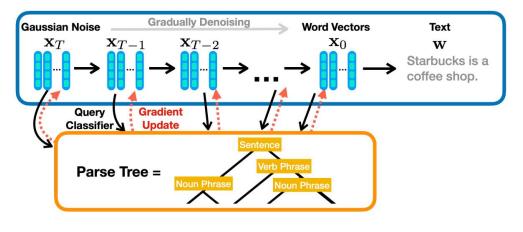
Hong Kong University of Science and Technology

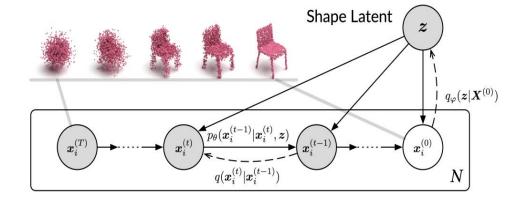
Diffusion models



images: Stable Diffusion, Midjourney

video: Sora





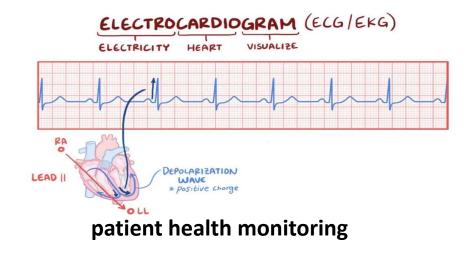
text

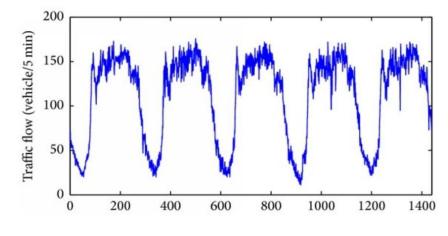
3D data

Time series data are prevalent

machine monitoring

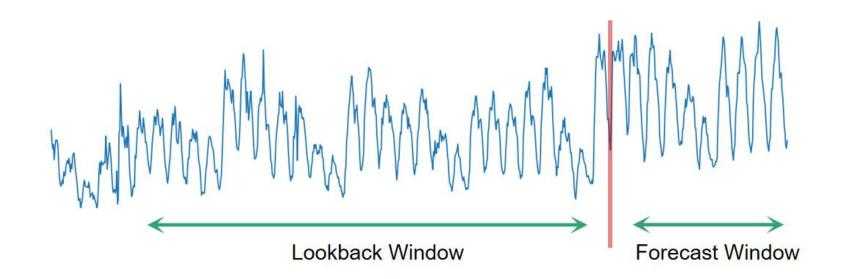
stock price prediction





traffic flow optimization

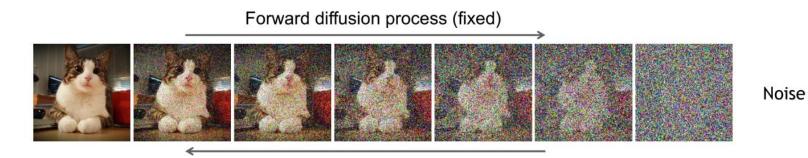
Time series forecasting



predict forecast window $\mathbf{x}_{1:H}^0 \in \mathbb{R}^{d imes H}$ given lookback window $\mathbf{x}_{-L+1:0}^0 \in \mathbb{R}^{d imes H}$

- *d*: number of variables
- *H*: length of the forecast window
- *L*: length of the lookback window

Denoising diffusion probabilistic models (DPPM)



Data

Reverse denoising process (generative)

forward diffusion

input x⁰ is gradually corrupted to a Gaussian noise vector

$$q(\mathbf{x}^k|\mathbf{x}^{k-1}) = \mathbb{N}(\mathbf{x}^k; \sqrt{1-eta_k}\mathbf{x}^{k-1}, eta_k \mathbf{I})$$

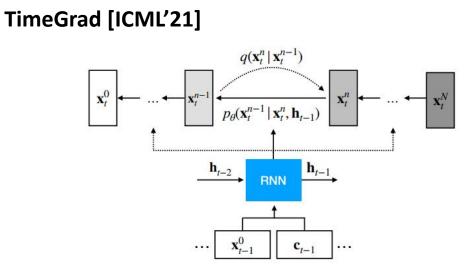
backward denoising

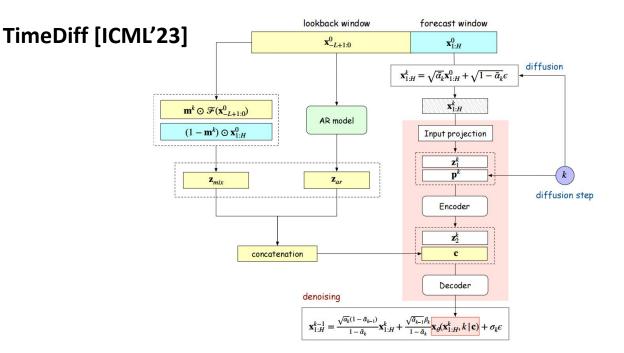
learns to generate data by denoising

$$p_{ heta}(\mathbf{x}^{k-1}|\mathbf{x}^k) = \mathbb{N}(\mathbf{x}^{k-1}; \mu_{ heta}(\mathbf{x}^k, k), \sigma_k^2 \mathbf{I})$$

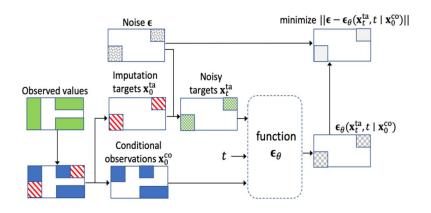
• $\mu_{\theta}(\mathbf{x}^k, k)$: defined by a neural network (with parameter θ).

Example diffusion models for time series

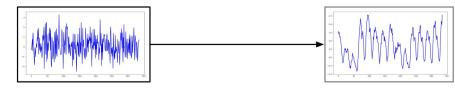




CSDI [NeurIPS'21]



generate time series directly from random vectors



random noises

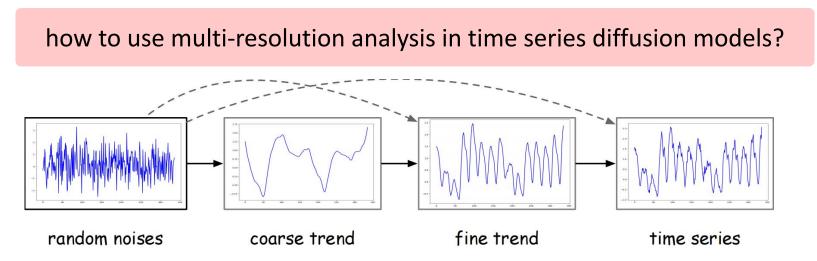
time series

Motivation

how to better utilize structural properties in time series?

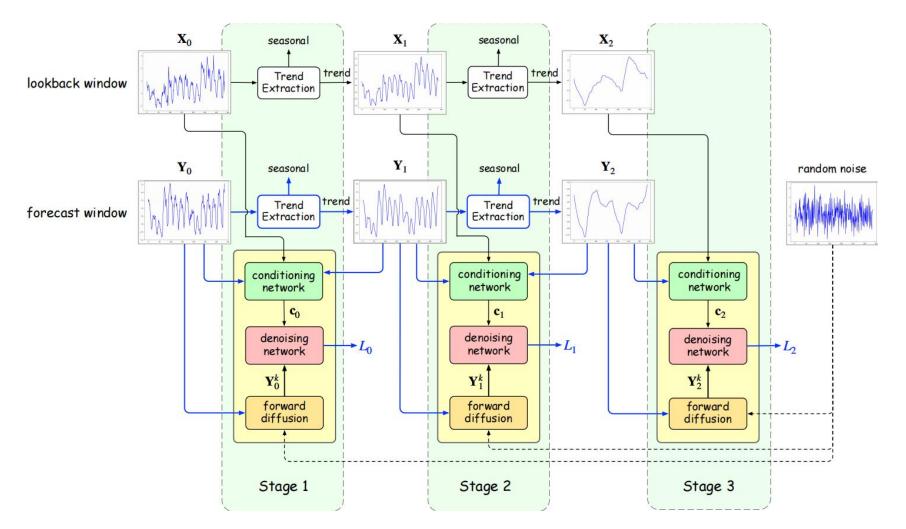
multi-resolution temporal structure in time series

- seasonal-trend decomposition: extract the seasonal and trend components
- the coarser temporal patterns can be used to help modeling the finer patterns



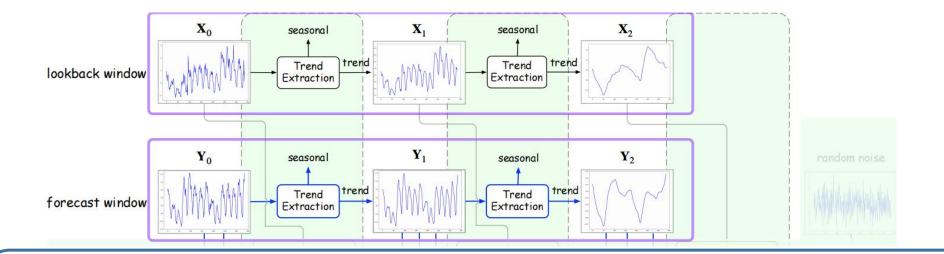
- coarser trends are generated first and the finer details are then progressively added.
- decompose the denoising objective into several sub-objectives, each corresponds to a particular resolution.

Multi-resolution diffusion model (mr-Diff)



• in each stage, diffusion is interleaved with seasonal-trend decomposition

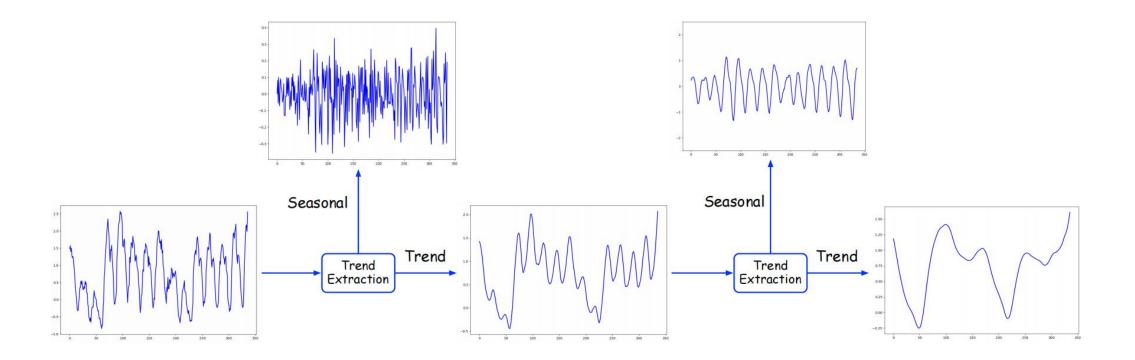
Extract trend components successively



$\mathbf{X}_s = \texttt{AvgPool}(\texttt{Padding}(\mathbf{X}_{s-1}), au_s)$

- Xs : trend component at stage s + 1 (X₀ = X)
 - AvgPool: average pooling
 - Padding: keeps the lengths of Xs-1 and Xs the same
 - τs : smoothing kernel size
 - increases with s (trend gets coarser as s increases
- similar processing for the segment Y₀ in the forecast window extract trend components {Ys }_{s=1,...,S-1}

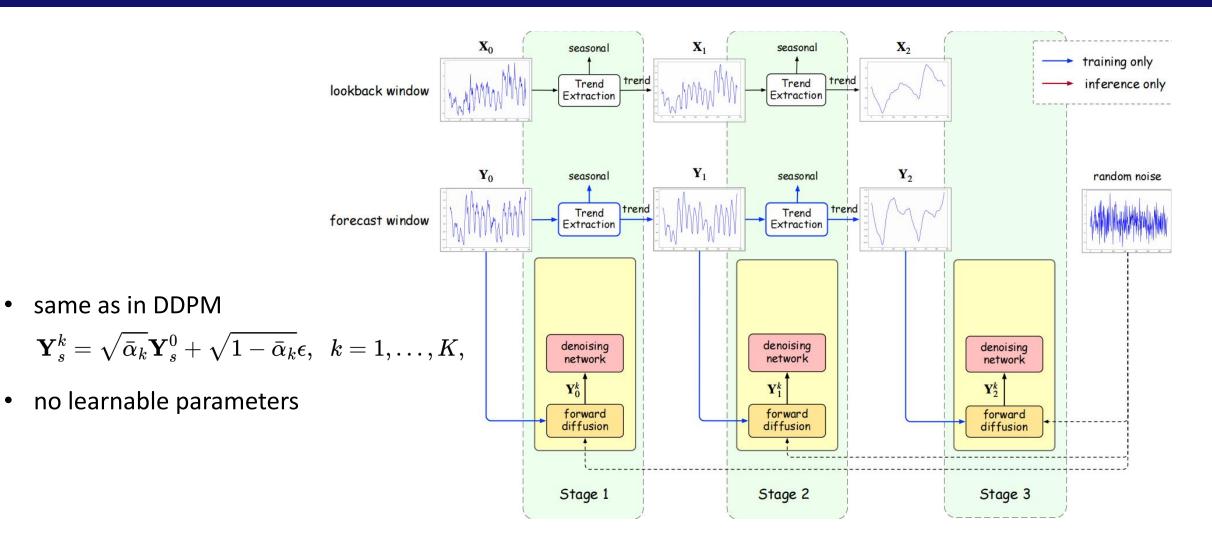
Extract trend components successively



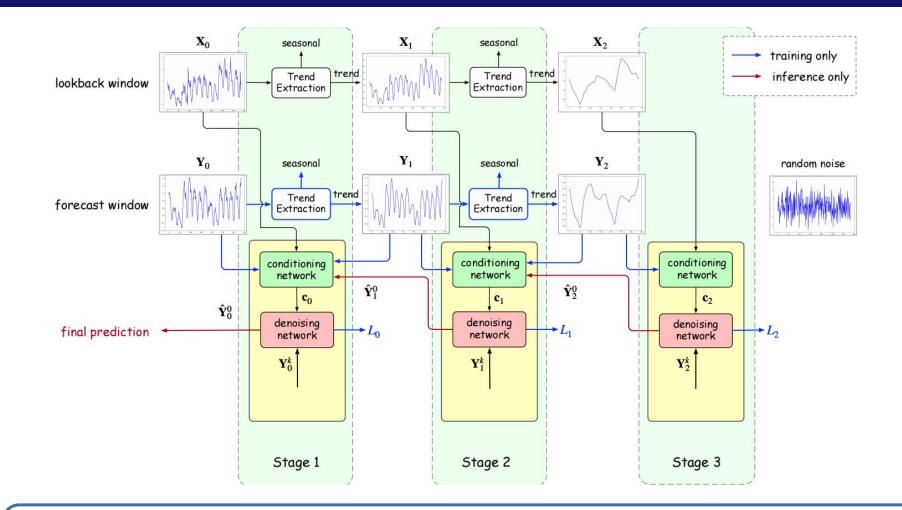
- focus here is on the trend component
- for time series, it is easier to predict a finer trend from a coarser trend
- stage s + 1: learns to reconstruct the trend component Ys from Ys+1

Forward diffusion

•

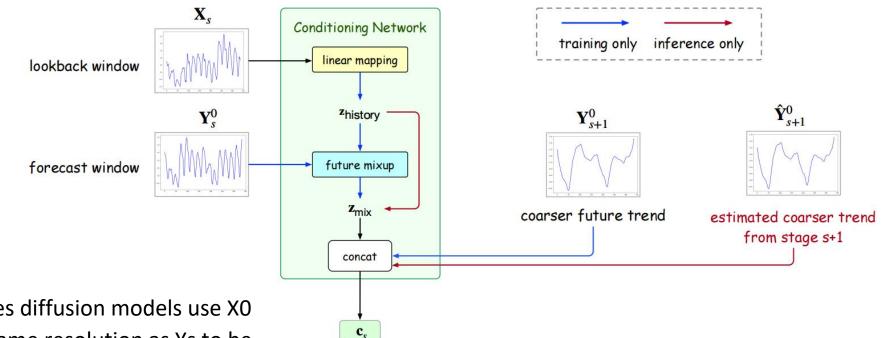


Backward denosing



• we perform progressive denoising in **an easy-to-hard manner**, generating coarser signals first and then finer details. This allows a more accurate prediction of time series.

Conditioning network

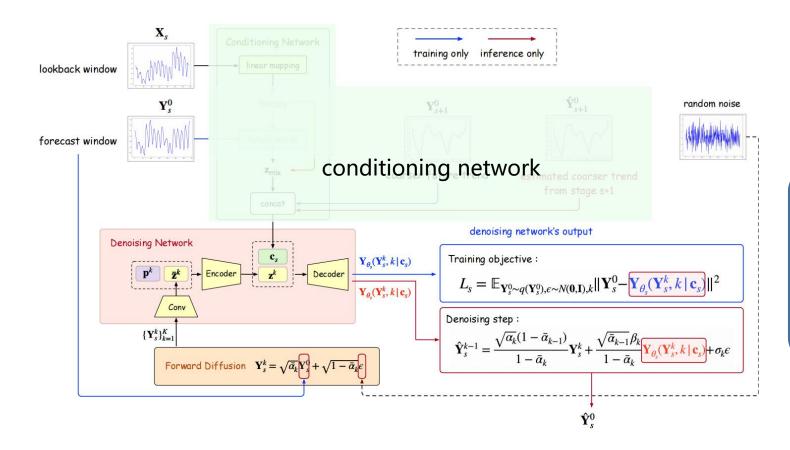


Condition inputs:

- Xs (lookback segment)
 - existing time series diffusion models use X0 \geq
 - \geq ours: Xs has the same resolution as Ys to be reconstructed
- **Y**s+1: (ground-truth) coarser trend
 - provides an overall picture of the finer Ys
- \mathbf{Y}_{S}^{0} : (ground-truth) future observation
 - future-mixup with z_{history} (a linear mapping on Xs)
 - s = S (last stage): no coarser trend and cs is simply z_{mix} ٠

Future mixup: combine past and future time series information $\mathbf{z}_{\texttt{mix}} = \mathbf{m} \odot \mathbf{z}_{\texttt{history}} + (1 - \mathbf{m}) \odot \mathbf{Y}_s^0$ where \odot denotes the Hadamard product, and $\mathbf{m} \in [0,1)^{d imes H}$.

Denoising network

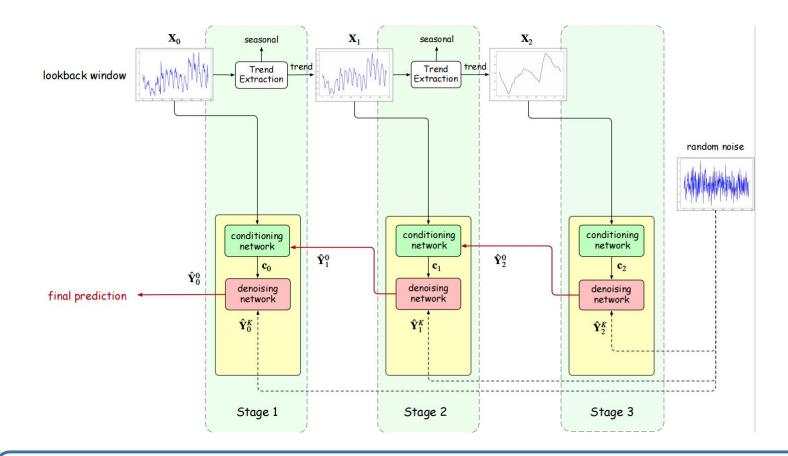


- map Y^k_S to the embedding by convolutional layers
- feed to an encoder
- concatenate with condition cs
- feed to a decoder, and output

• during training, one denoising objective one for each stage

 $\min_{\theta_s} \mathcal{L}_s(\theta_s) = \min_{\theta_s} \mathbb{E}_{\mathsf{Y}_s^0 \sim q(\mathsf{Y}_s), \epsilon \sim \mathcal{N}(0,\mathsf{I}), k} \left\| \mathsf{Y}_s^0 - \mathsf{Y}_{\theta_s}(\mathsf{Y}_s^k, k|\mathsf{c}_s) \right\|^2$

Inference



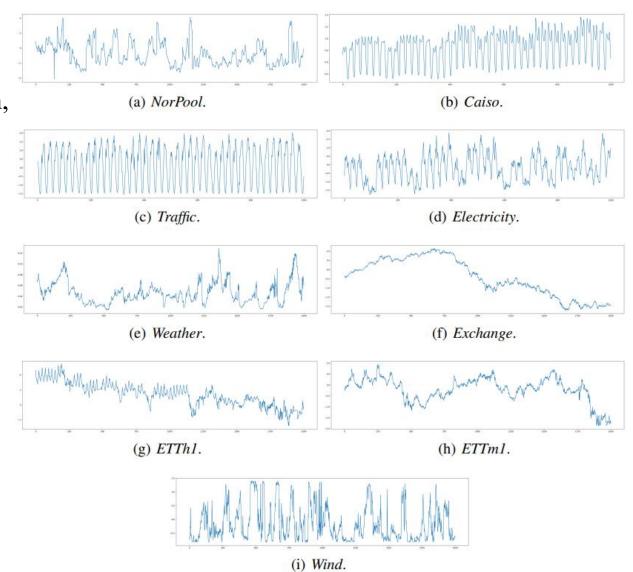
for each $s=S,\ldots,1$, start from $\hat{\mathbf{Y}}_s^K \sim \mathcal{N}(\mathbf{0},\mathbf{I})$

- encourages denoising to proceed in an easy-to-hard manner
- coarser trends are generated first, finer details are progressively added
- reconstruction at stage 1 corresponds to the target time series forecast

Datasets

Summary of dataset statistics, including dimension, total observations, sampling frequency, and prediction length.

51 25	dimension	#observations	frequency	steps (H)
NorPool	18	70,128	1 hour	720 (1 month)
Caiso	10	74,472	1 hour	720 (1 month)
Traffic	862	17,544	1 hour	168 (1 week)
Electricity	321	26,304	1 hour	168 (1 week)
Weather	21	52,696	10 mins	672 (1 week)
Exchange	8	7,588	1 day	14 (2 weeks)
ETTh1	7	17,420	1 hour	168 (1 week)
ETTm1	7	69,680	15 mins	192 (2 days)
Wind	7	48,673	15 mins	192 (2 days)



Baselines

(i) recent time series diffusion models: non-autoregressive diffusion model TimeDiff (Shen & Kwok, 2023), TimeGrad (Rasul et al., 2021), conditional score-based diffusion model for imputation (CSDI) (Tashiro et al., 2021), structured state space model-based diffusion (SSSD) (Alcaraz & Strodthoff, 2022);

(ii) recent generative models for time series prediction: variational autoencoder with diffusion, denoise and disentanglement (D3VAE) (Li et al., 2022), coherent probabilistic forecasting (CPF) (Rangapuram et al., 2023), and PSA-GAN (Jeha et al., 2022);

(iii) recent prediction models based on basis expansion: NHits (Challu et al., 2023), frequency improved Legendre memory model (FiLM) (Zhou et al., 2022a), Depts (Fan et al., 2022) and NBeats (Oreshkin et al., 2019);

(iv) time series transformers: Scaleformer (Shabani et al., 2023), PatchTST (Nie et al., 2022), Fedformer (Zhou et al., 2022b), Autoformer (Wu et al., 2021), Pyraformer (Liu et al., 2021), Informer (Zhou et al., 2021) and the standard Transformer (Vaswani et al., 2017); and

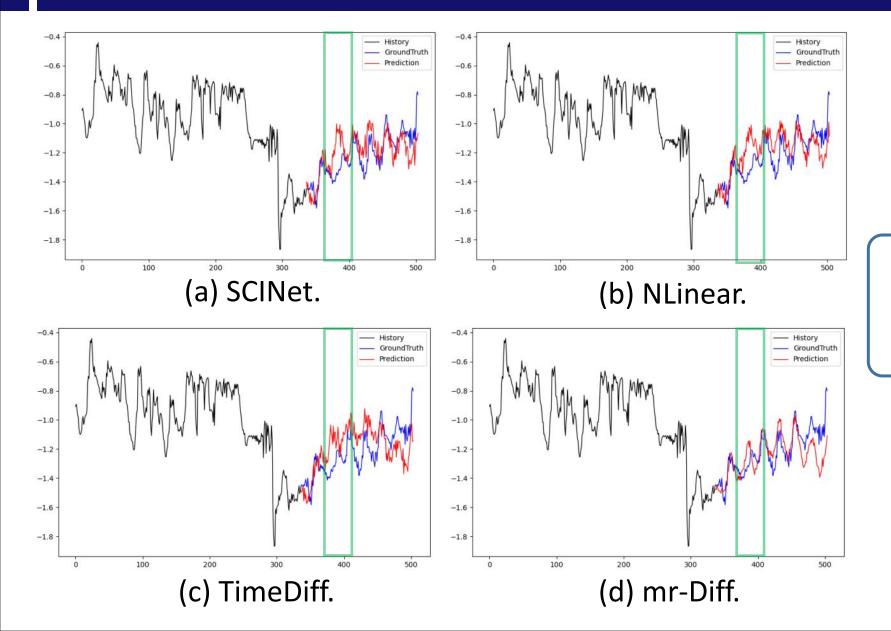
(v) other competitive baselines: SCINet (Liu et al., 2022) that introduces sample convolution and interaction for time series prediction, NLinear (Zeng et al., 2023), DLinear (Zeng et al., 2023) LSTMa (Bahdanau et al., 2015), and an attention-based LSTM (Hochreiter & Schmidhuber, 1997).

MAE on univariate time series

NorPool	Caiso	Traffic	Electricity	Weather	Exchange	ETTh1	ETTml	Wind	avg rank
$ \underline{0.609}_{(2)} $	0.212(4)	$\underline{0.197}_{(2)}$	0.332 ₍₁₎	0.032 ₍₁₎	0.094 (1)	0.196 (1)	0.149 ₍₁₎	<u>1.168(2)</u>	1.7
$ \begin{vmatrix} 0.613_{(3)} \\ 0.841_{(23)} \\ 0.763_{(20)} \\ 0.770_{(21)} \end{vmatrix} $	$\begin{array}{c} 0.209_{(3)} \\ 0.386_{(22)} \\ 0.282_{(14)} \\ 0.263_{(12)} \end{array}$	$\begin{array}{c} 0.207_{(3)} \\ 0.894_{(23)} \\ 0.468_{(20)} \\ 0.226_{(6)} \end{array}$	$\begin{array}{c} 0.341_{(3)} \\ 0.898_{(23)} \\ 0.540_{(19)} \\ 0.403_{(8)} \end{array}$	$\begin{array}{c} 0.035_{(4)} \\ 0.036_{(6)} \\ 0.037_{(7)} \\ 0.041_{(11)} \end{array}$	$\begin{array}{c} 0.102_{(7)} \\ 0.155_{(21)} \\ 0.200_{(23)} \\ 0.118_{(16)} \end{array}$	$\begin{array}{c} \underline{0.202}_{(2)}\\ 0.212_{(8)}\\ 0.221_{(12)}\\ 0.250_{(20)} \end{array}$	$\begin{array}{c} 0.154_{(6)} \\ 0.167_{(12)} \\ 0.170_{(14)} \\ 0.169_{(13)} \end{array}$	$\begin{array}{c} 1.209_{(5)} \\ 1.239_{(11)} \\ 1.218_{(7)} \\ 1.356_{(22)} \end{array}$	4.0 16.6 15.1 14.3
$ \begin{vmatrix} 0.774_{(22)} \\ 0.710_{(15)} \\ 0.623_{(5)} \end{vmatrix} $	$\begin{array}{c} 0.613_{(23)} \\ 0.338_{(18)} \\ 0.250_{(8)} \end{array}$	$\begin{array}{c} 0.237_{(9)} \\ 0.385_{(19)} \\ 0.355_{(17)} \end{array}$	$\begin{array}{c} 0.539_{(18)} \\ 0.592_{(21)} \\ 0.373_{(6)} \end{array}$	$\begin{array}{c} 0.039_{(9)} \\ 0.035_{(4)} \\ 0.139_{(22)} \end{array}$	$\begin{array}{c} 0.107_{(13)} \\ 0.094_{(1)} \\ 0.109_{(14)} \end{array}$	$\begin{array}{c} 0.221_{(12)} \\ 0.221_{(12)} \\ 0.225_{(16)} \end{array}$	$\begin{array}{c} 0.160_{(9)} \\ 0.153_{(5)} \\ 0.174_{(16)} \end{array}$	$\begin{array}{c} 1.321_{(19)} \\ 1.256_{(12)} \\ 1.287_{(16)} \end{array}$	14.9 11.9 13.3
$ \begin{vmatrix} 0.646_{(7)} \\ 0.654_{(9)} \\ 0.616_{(4)} \\ 0.671_{(10)} \end{vmatrix} $	$\begin{array}{c} 0.276_{(13)} \\ 0.290_{(15)} \\ \textbf{0.205}_{(1)} \\ 0.228_{(5)} \end{array}$	$\begin{array}{c} 0.232_{(7)} \\ 0.315_{(14)} \\ 0.241_{(10)} \\ 0.225_{(5)} \end{array}$	$\begin{array}{c} 0.419_{(9)} \\ 0.362_{(5)} \\ 0.434_{(12)} \\ 0.439_{(13)} \end{array}$	$\begin{array}{c} \underline{0.033}_{(2)} \\ \overline{0.069}_{(14)} \\ 0.102_{(19)} \\ 0.130_{(21)} \end{array}$	$\begin{array}{c} 0.100_{(5)} \\ 0.104_{(10)} \\ 0.106_{(12)} \\ \underline{0.096}_{(3)} \end{array}$	$\begin{array}{c} 0.228_{(17)} \\ 0.210_{(6)} \\ \underline{0.202}_{(2)} \\ 0.242_{(18)} \end{array}$	$\begin{array}{c} 0.157_{(8)} \\ \textbf{0.149}_{(1)} \\ 0.165_{(10)} \\ 0.165_{(10)} \end{array}$	$\begin{array}{c} 1.256_{(12)} \\ 1.189_{(3)} \\ 1.472_{(23)} \\ 1.236_{(9)} \end{array}$	8.9 8.6 10.3 10.4
0.590 ⁽¹⁾ 0.725 ⁽¹⁷⁾ 0.755 ⁽¹⁹⁾ 0.747 ⁽¹⁸⁾ 0.698 ⁽¹³⁾	$\begin{array}{c} 0.320_{(16)}\\ 0.260_{(11)}\\ 0.254_{(9)}\\ 0.339_{(19)}\\ 0.257_{(10)}\\ 0.345_{(20)}\\ 0.345_{(20)} \end{array}$	$\begin{array}{c} 0.375_{(18)}\\ 0.269_{(11)}\\ 0.278_{(12)}\\ 0.495_{(21)}\\ 0.215_{(4)}\\ 0.308_{(13)}\\ 0.336_{(16)} \end{array}$	$\begin{array}{c} 0.430_{(10)}\\ 0.478_{(17)}\\ 0.453_{(14)}\\ 0.623_{(22)}\\ 0.455_{(15)}\\ 0.433_{(11)}\\ 0.469_{(16)} \end{array}$	$\begin{array}{c} 0.083_{(17)}\\ 0.098_{(18)}\\ 0.057_{(13)}\\ 0.040_{(10)}\\ 0.107_{(20)}\\ 0.069_{(14)}\\ 0.071_{(16)} \end{array}$	$\begin{array}{c} 0.148_{(19)} \\ 0.111_{(15)} \\ 0.168_{(22)} \\ 0.152_{(20)} \\ 0.104_{(10)} \\ 0.118_{(16)} \\ 0.103_{(9)} \end{array}$	$\begin{array}{c} 0.302_{(22)}\\ 0.260_{(21)}\\ 0.212_{(8)}\\ 0.220_{(11)}\\ 0.211_{(7)}\\ 0.212_{(8)}\\ 0.247_{(19)} \end{array}$	$\begin{array}{c} 0.210_{(22)}\\ 0.174_{(16)}\\ 0.195_{(20)}\\ 0.174_{(16)}\\ 0.179_{(19)}\\ 0.172_{(15)}\\ 0.196_{(21)} \end{array}$	$\begin{array}{c} 1.348_{(21)} \\ 1.338_{(20)} \\ 1.271_{(14)} \\ 1.319_{(18)} \\ 1.284_{(15)} \\ 1.236_{(9)} \\ 1.212_{(6)} \end{array}$	17.4 14.4 14.3 17.3 13.1 13.2 15.4
$ \begin{vmatrix} 0.653_{(8)} \\ 0.637_{(6)} \\ 0.671_{(10)} \\ 0.707_{(14)} \end{vmatrix} $	$\begin{array}{c} 0.244_{(7)} \\ 0.238_{(6)} \\ \underline{0.206}_{(2)} \\ 0.333_{(17)} \end{array}$	$\begin{array}{c} 0.322_{(15)} \\ \textbf{0.192}_{(1)} \\ 0.236_{(8)} \\ 0.757_{(22)} \end{array}$	$\begin{array}{c} 0.377_{(7)} \\ \underline{0.334}_{(2)} \\ 0.348_{(4)} \\ 0.557_{(20)} \end{array}$	$\begin{array}{c} 0.037_{(7)}\\ \underline{0.033}_{(2)}\\ 0.310_{(23)}\\ 0.053_{(12)} \end{array}$	$\begin{array}{c} 0.101_{(6)} \\ 0.097_{(4)} \\ 0.102_{(7)} \\ 0.136_{(18)} \end{array}$	$\begin{array}{c} 0.205_{(5)} \\ 0.203_{(4)} \\ 0.222_{(15)} \\ 0.332_{(23)} \end{array}$	$\begin{array}{c} \underline{0.150}_{(4)}\\ \hline \textbf{0.149}_{(1)}\\ 0.155_{(7)}\\ 0.239_{(23)} \end{array}$	1.167 ₍₁₎ 1.197 ₍₄₎ 1.221 ₍₈₎ 1.298 ₍₁₇₎	6.7 3.3 9.3 18.4
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

- mr-Diff is the best in 5 of the 9 datasets on remaining 4 datasets,
- mr-Diff ranks second in 3 of them

Example prediction results on ETTh1



By progressively denoising the time series in a coarse-to-fine manner, mr-Diff produces higher-quality predictions than the others.

Twelfth International Conference on Learning Representations

Conclusions

- > mutli-resolution diffusion (**mr-Diff**), a new cascaded diffusion model for time series
- incorporates seasonal-trend decomposition and uses multiple temporal resolutions in both the diffusion and denoising processes
- progressive denoising the time series in a coarse-to-fine manner
 - \rightarrow more reliable predictions
- experiments show that mr-Diff outperforms the state-of-the-art time series diffusion models

