
DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified Robustness

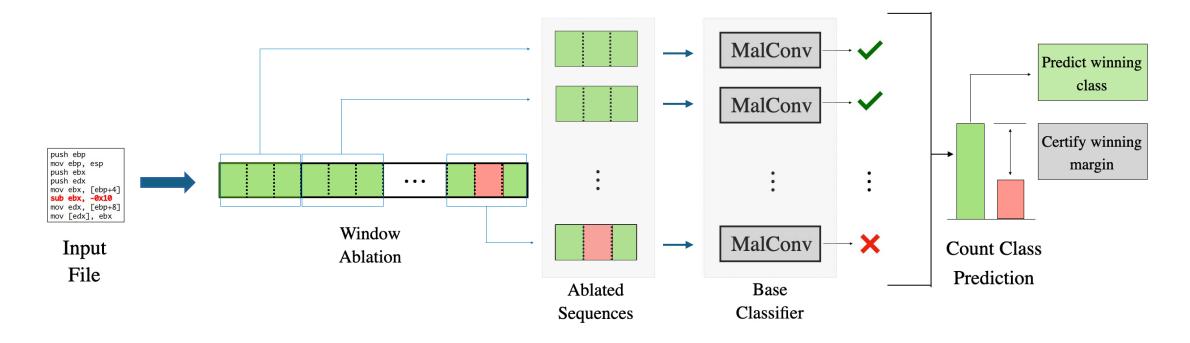
Shoumik Saha, Wenxiao Wang, Yigitcan Kaya, Soheil Feizi, Tudor Dumitras

Problem

- ML has been heavily used in static malware detection
- Malware authors have been generating adversarial malware to bypass such ML models

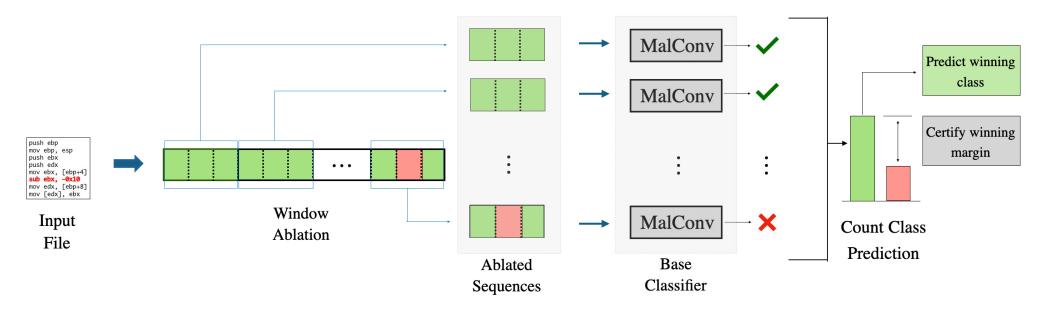
Prior Defenses

- Non-negative or Monotonic Classifier
 - Constraining weight in the layer
 - Fleshamn et. al. (2018) constrained the last layer weight of MalConv
 - Suffers from low standard accuracy of 88.36%
 - Still vulnerable against some attacks
- Adversarial Training
 - Trained with adversarial malware
 - Suffers from poor robustness against attacks not used during training
 - Also suffers from low standard accuracy


Standard Accuracy vs Robustness!!

How can we solve it?

De-Randomized Smoothing


- First proposed in Computer Vision introducing 'certified' robustness
- Has been heavily used with different ablation techniques, e.g., masking pixels, block ablation, etc.
- Can it be used in malware detection?
- Challenges:
 - Executable byte files are different than image
 - Our input is one-dimensional unlike images
 - Random byte changes in our file can alter file behavior/structure
- Solution:
 - Re-designing the De-Randomized Smoothing technique
 - 'Window Ablation' Scheme

Window Ablation Scheme

$$G_{\theta}(x) = \operatorname{argmax}_{c} n_{c}(x);$$

where
$$n_{c}(x) = \sum_{x' \in S(x)} I\{F_{\theta}(x') = c\}$$

Window Ablation Scheme

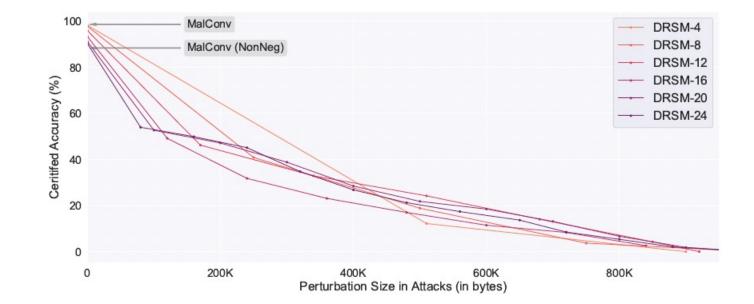
- Base classifier input length = L
- Ablated window size = w
- Number of ablated sequences = $\lfloor L/w \rfloor$

• Perturbation size = p

• Highest modifiable ablated sequences, $\Delta = [p/w] + 1$

Certified robustness condition:

 $n_c(x) > max_{c \neq c'} \ n_{c'}(x) + 2\Delta$


Experiments

- Evaluated six variants of DRSM-n
- Our DRSM models provide a spectrum for standard vs certified accuracy

Model	Standard Accuracy (in %) ↑			Certified Accuracy $[\Delta = 2]$ (in %) \uparrow		
	Train-set	Validation-set	Test-set	Train-set	Validation-set	Test-set
MalConv	99.73	98.87	98.61	—	-	—
MalConv(NonNeg)	88.56	87.56	88.36	—	—	—
DRSM-4	99.49	98.12	98.18	14.74	7.84	12.2
DRSM-8	99.67	97.88	97.79	52.74	43.9	40.85
DRSM-12	96.07	95.58	95.88	45.77	44.43	46.21
DRSM-16	94.29	93.00	93.3	59.1	50.52	49.17
DRSM-20	91.17	91.05	91.15	51.64	51.92	52.68
DRSM-24	90.22	89.80	90.24	54.19	54.88	53.97

Experiments

• Variation in perturbation budget impacts certified accuracy

Empirical Robustness

- Evaluated our DRSM against nine different attacks! ٠
 - Covering both white and black box settings

DRSM-8

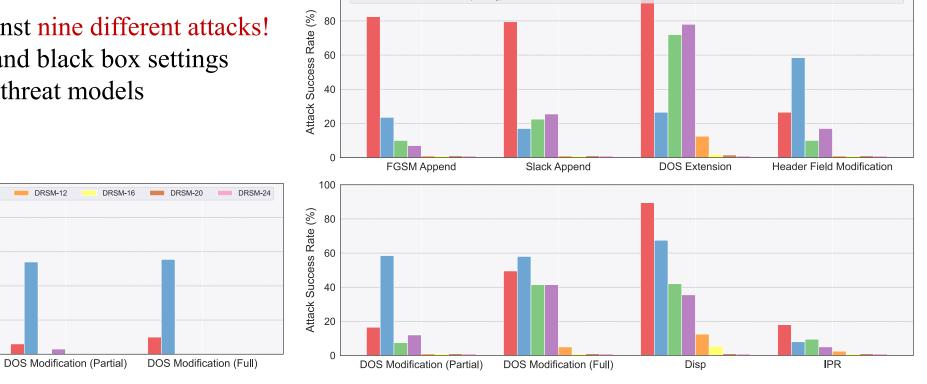
DRSM-12

Considering different threat models •

DRSM-4

Header Field Modification

100


Attack Success Rate (%) 07 07 09 08

Ω

MalConv

MalConv (NonNeg)

Gamma

DRSM-4

DRSM-8

Black-box Attacks

White-box Attacks

DRSM-12

DRSM-16

DRSM-20

DRSM-24

100

MalConv

MalConv (NonNeg)

PACE Dataset

- Publicly Accessible Collections of Executables (PACE)
- For this research, we compiled a diverse benign dataset of 15.5K size crawling different websites
- To help the community, we are making this benign dataset publicly available

Thank you!