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The key idea of E-TS is to limit the exploration within the competitive set, which is

Vel‘tical federated learning (VFL) MethOdOlogy defined using the expected maximum reward of each arm
VFL inference process: % Prediction Decompose into an inner problem of adversarial example generation (AEG) and an outer Regret An alysis

[0.1,0.9] Top problem of corruption pattern selection (CPS)
[0.8,0.2]
del . . oqs .

1. Clientm € [M] computes Server mo ' ) ¢ ot : . ; Lemma 1 (Expected pulling times of a non-competitive arm). Under the above assumption, for a
embedding h., and sendsto =~ -------—»2 QO ________ Inner problem (AEG):  min L(ni;C%), st ||ngllee < Blubi —1b;),Vi € [BT]. (1) non-competitive arm k¢ # 1 with Agne 1 < 0, the expected number of pulling times in T' rounds,
the server: m .( ' \u s ie., E[ngnc(T)], is bounded by E[ngn(T)] < O(1).

; , : | E [ZT (o — E, [A*(CE; Bt)]] Lemma 2 (Expected pulling times of a competitive but sub-optimal arm). Under the above

2. The server receives and o N © B e = o . . t=1 ’ (2) assumption, the expected number of times pulling a competitive but sub-optimal arm k**“° with

. Outer problem (CPS): min 7 ’

aggregates all embeddings {ct}T_, S, Bt Agsue 1 > 0in T rounds is bounded as follows,
as [h ) h ) e h ; Bottom Bottom Bottom -

; Th[ 1702 f M]d model 1 model 2 model 3 s.L. |Ct| =C, Vte [T]v d t

- IN€Servertorwar r‘j = Efngeou (T)] = Y _ Pr(k(t) = k™, n1(t) > =) < O(log(T)).
propagates the aggregated client 13 PO Client 2 2 Client 3 . _ . _ . . i1 N
embedding and derives the MM\ AEG solution: Use natural evolution strategy (NES) combined with projected gradient
orediction vectors, which are Rl e IEIEIEIE decent method to solve (1). NES is a type of zero-order gradient method, which employ Theorem 1 (Upper bound on expected regret of E-TS). Let D < N denote the number of
) ! : - - ; : : e ol . competitive arms. Under the above assumption, the expected regret of the E-TS algorithm is upper
sent to all clients. : z z gaussian noise to query model for estimating gradients. The estimation is given by: bounded by DO(log(T)) + (N — D)O(1).
VFL inference process and adversary’s capability V. L' CY) ~ Z 5,L (nt +08;;Ct) . 3) Note that the regret of traditional TS is bounded by NO(log(T)).
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Advers ary \(/:\I/):tsr(a)lnustfi:rnrr:\ CPS to an MAB problem. Experimental reSUIt

Goal: (Target label y,, Prediction ) Picking a corruption pattern ¢t  -—------ > Aselected arm k(t) inaroundt FashionMNIST CIFAR-10
1 Ta rge te d 3 ttaCk' 5; _ y (25 attack rounds/test epoch) (27 attack rounds/test epoch)
. . - v-

2. Untargeted attack: y + y,,. B 4'—@ 2 Q The expected reward E,[A*(Ct,BY))] ~——-—~-- > Mean pg ) o 8] :: W % 7WW\-"
2. / N / : " | LI AN
— ETS N\~ E7s

Metric: Attack success rate (ASR) S 5l n s B AN B

Capability: Best corruption pattern’smean @ ------- > Uy 2321 =] S P —m R —en
i icati ikt an=r I INE 2SS o -
1. The adversary can access, replay, and manipulate messages on the communication 2 — G o5 o) G| ] omam AAAAT S
channel between two endpoints (i.e., the channel between client x and the server). The attack ASRA(Ct,BY)  _______ » Reward ry i (t) N T B S e T S S e S I S T
. ] . Test epoch Test epoch est epoc est epoc
2. The adversary can corrupt at most € < M clients and perturb their embeddings h; , T (@) Target d(; 0.15) (b) Untarget Z(ﬁ o) O ) ;;ﬁh 0.08) (d) Untargeted (8 = 0.08)
- - ’ . : _ a) largete = 0. ntargete = U. c) largete = 0. o
to R, , such that ||fia — Rialleo < Alub; — 1b;) . CPS problem in (2) ) min )7, B [Zt=1(“1 “k“))}
Adaptive corruption: The adversary adaptively adjusting their corruption patterns Ct. . . . Credit Real-Sim Caltech
P P y P ¥ ad] & P P For solving this MAB problem, we propose a novel method named Thompson sampling o (30 attack rounds/test epoch) (27 attack rounds/test epoch)
.. o with empirical maximum reward (E-TS) (Algorithm 1), enabling the adversary to efficiently % 0 ~ o o AARPGSRS |
50 ] >
PrOblem deﬁnltlon identify the optimal corruption pattern. 0 / N 2 / | T
E:, 60 / | 30 A A
Algorithm 1 E-TS for CPS 2 s FN—— e P / — 5 7 VRGN BN
N 20 W 20 - R 20 WP
. = = = max — = RC A~ — & ¢ ¢
The adversary aims to find the optimal set of corruption patterns {C'}I_,, and the optimal ; :.g:,t;al'zftgm VkTEd([)N] e = 0,05 = 1, = 0,m™ = 0,4, = 0. 30| T — G2 — i e e — | | RPN S
20 - v ' v . v . . ' . ' . . ;
set of perturbations {{n} i=1}t=1 for each sample i € [B] in attack round t € [T], 3:  ift >t then o ety - 3 W Bo® s w6 5 BB od om o» o 3 B B H B w0 5 w boH B P
e . 4 Select fully explored arms to construct the set S; = {k € [N| : np > ~5~}. _ . . .
maximizing the expected cumulative ASR over T attack rounds. 5. Select the empirical best arm k°™P (£) = maxpcs, fix. () B =0.3 HB=0.3 (g) Targeted (8 = 0.3) (h) Untargeted (3 = 0.3)
6: Initialize £ = @, add arms k € [N] which satisfy ¢ > figems (1) to E”. IMDB Def
: : . : efense
Formulate this attack as an online optimization pr0b|em ; elSIenitialize set £ = [N]. (20 attack rounds/test epoch) (4 different strategies)

—4— No defense
Manifold projection

—e— Dropout

—&— Randomized smoothing

Sample batch data [B?], play the arm k(t) as the corruption pattern in Algorithm 2 and

: 851 ] 100
9: endif 60
t t. pt 10:  Vk € E': Sample 6, ~ N (jix, 6%). 80 50 801
[Zt 1 K, [max{ t}Bt A({nz} 1 ,C' B )] :| 11:  Choose the arm k(t) = arg max;, 6y and decide the corrpution pattern C* = k(t). 275 § 401 ’74//‘/ oo
max 12: i i i < & 30|
2 — ETS

{ct ?:1 Bt observe the reward 7y, (t) from the attack result for the corrupted embedding h! A = b A TS “ 20 401
t 1 (t) i,a R

t. |Ct = C, |nf|lee < B(ub; — Ib;), Vit € [T] (B o, B, ), Vi€ [B]. | S| T — g

S.L. — N;lloo U ) . ) _ ~ _ By (i) =D Free () 4 _ 1 max _ o0 0 1 s 3 & 7 3 3

13: Update nk(t) — nk(t) + 1’ {‘l’k(t() - - Nk (t) Uk(t) - ’nk(t)+1’ Tk:(t) - ° ’ 0Test espoch20 * * ' Nuriber gf corrtptedsclienti((:) ’ ' Nurf'\ber o3f corrtptedSCIienti(C) !

max A Pr(t) Mkt TE(t .
max{'r'k(t) y TE(t) (t)},@k(t) = =0 ;:m ® . (i) B=0.05 (a) Targeted (8 = 0.3) (b) Untargeted (8 =0.1)
. . 14: end for ) . . ) )
E, is taken over the randomness with the t-th attack round 15: Output {k(1), ..., k(T)} Figure 1: Attack performance on Figure 2: Attack performance on FashionMNIST under

six datasets of distinct VFL tasks. different defense strategies.

[E is taking over the randomness of all T rounds

to: warm-up round. @) : empirical maximum reward of k(t). £,: competitive set at ¢ round.
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