

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

INFORMATION HUB

港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

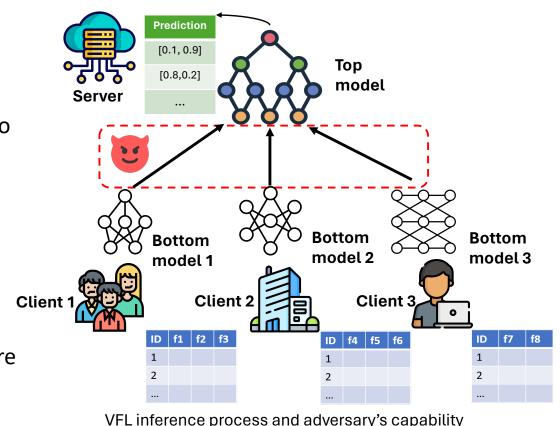
Constructing Adversarial Examples for Vertical Federated Learning: Optimal Client Corruption through Multi-Armed Bandit

Duanyi Yao¹, Songze Li², Ye Xue³, Jin Liu⁴ ¹HKUST, ²Southeast University, ³Shenzhen Research Institute of Big Data, CUHK(SZ), ⁴HKUST(GZ)

Vertical federated learning (VFL)

VFL inference process:

- 1. Client $m \in [M]$ computes embedding h_m and sends to the server;
- 2. The server receives and aggregates all embeddings as $[h_1, h_2, ..., h_M];$
- 3. The server forward propagates the aggregated embedding and derives the prediction vectors, which are sent to all clients.



Adversary

Goal: (Target label y_v , Prediction \hat{y})

- 1. Targeted attack: $\hat{y} = y_v$.
- 2. Untargeted attack: $\hat{y} \neq y_{\nu}$.
- Metric: Attack success rate (ASR) **Capability:**

- 1. The adversary can access, replay, and manipulate messages on the communication channel between two endpoints (i.e., the channel between client x and the server).
- 2. The adversary can corrupt at most $C \leq M$ clients and perturb their embeddings $h_{i,q}$ to $\tilde{h}_{i,a}$ such that $\|\tilde{h}_{i,a} - h_{i,a}\|_{\infty} \leq \beta(ub_i - lb_i)$.

Adaptive corruption: The adversary adaptively adjusting their corruption patterns C^{t} .

Problem definition

The adversary aims to find the **optimal set of corruption patterns** $\{C^t\}_{t=1}^T$, and the **optimal** set of perturbations $\{\{\eta_i^t\}_{i=1}^{B^t}\}_{t=1}^T$ for each sample $i \in [B^t]$ in attack round $t \in [T]$, maximizing the expected cumulative ASR over T attack rounds.

Formulate this attack as an online optimization problem

$$\max_{\{\mathcal{C}^t\}_{t=1}^T} \quad \frac{\mathbb{E}\left[\sum_{t=1}^T \mathbb{E}_t \left[\max_{\{\boldsymbol{\eta}_i^t\}_{i=1}^{B^t}} A(\{\boldsymbol{\eta}_i^t\}_{i=1}^{B^t}, \mathcal{C}^t; B^t)\right]\right]}{\sum_{t=1}^T B^t}$$

s.t. $|\mathcal{C}^t| = C, \ \|\boldsymbol{\eta}_i^t\|_{\infty} \leq \beta(ub_i - lb_i), \ \forall t \in [T].$

 \mathbb{E}_t is taken over the randomness with the t-th attack round \mathbb{E} is taking over the randomness of all T rounds

Decompose into an inner problem of adversarial example generation (AEG) and an outer problem of corruption pattern selection (CPS)

Inner problem

Outer problen

AEG solution: Use natural evolution strategy (NES) combined with projected gradient decent method to solve (1). NES is a type of zero-order gradient method, which employ gaussian noise to query model for estimating gradients. The estimation is given by:

CPS solution: We transform CPS to an MAB problem.

Picking a corruption pa

The expected reward

Best corruption patter

The attack ASR $A(C^t)$,

CPS problem in (2)

For solving this MAB problem, we propose a novel method named **Thompson sampling** with empirical maximum reward (E-TS) (Algorithm 1), enabling the adversary to efficiently identify the optimal corruption pattern.

gorithm 1 E-TS	Alg
Initialization	1:
for $t = 1, 2, .$	2:
if $t > t_0$ the	3:
Select fu	4:
Select th	5:
Initialize	6:
else	7:
Initialize	8:
	9:
	10:
	11:
L	12:
observe the	
$[oldsymbol{h}_{i,a_1}^t,\ldots,$	
Update n_k	13:
$\max\{r_{k(t)}^{\max}\}$	
end for	
Output $\{k(1)\}$	15:
p round. $\widehat{oldsymbol{arphi}}_{k}$	t_0 : warm-up

Methodology

$$\text{n (AEG):} \quad \min_{\boldsymbol{\eta}_{i}^{t}} L(\boldsymbol{\eta}_{i}^{t}; \mathcal{C}^{t}), \quad \text{s.t.} \|\boldsymbol{\eta}_{i}^{t}\|_{\infty} \leq \beta(ub_{i} - lb_{i}), \forall i \in [B^{t}].$$
(1)
$$\text{n (CPS):} \quad \min_{\{\mathcal{C}^{t}\}_{t=1}^{T}} \frac{\mathbb{E}\left[\sum_{t=1}^{T} (\alpha^{*} - \mathbb{E}_{t}\left[A^{*}(\mathcal{C}^{t}; B^{t})\right]\right]}{\sum_{t=1}^{T} B^{t}}$$
(2)
$$\text{s.t.} |\mathcal{C}^{t}| = C, \ \forall t \in [T],$$

$$\nabla_{\boldsymbol{\eta}_{i}^{t}} L(\boldsymbol{\eta}_{i}^{t}; \mathcal{C}^{t}) \approx \frac{1}{\sigma n} \sum_{j=1}^{n} \boldsymbol{\delta}_{j} L\left(\boldsymbol{\eta}_{i}^{t} + \sigma \boldsymbol{\delta}_{j}; \mathcal{C}^{t}\right).$$
(3)

attern C ^t	>	A selected arm $k(t)$ in a round t
$\mathbb{E}_t[A^*(C^t, B^t)]$	>	Mean $\mu_{k(t)}$
ern's mean	>	μ_1
(B^t)	>	Reward $r_{k(t)}(t)$
		$\min_{\{(k(t)\}_{t=1}^T} \mathbb{E}\left[\sum_{t=1}^T (\mu_1 - \mu_{k(t)})\right]$

'S for CPS **n:** $\forall k \in [N], \hat{\mu}_k = 0, \hat{\sigma}_k = 1, n_k = 0, r_k^{\max} = 0, \hat{\varphi}_k = 0.$ \ldots, T do ully explored arms to construct the set $\mathcal{S}_t = \{k \in [N] : n_k \geq \frac{(t-1)}{N}\}$ he empirical best arm $k^{emp}(t) = \max_{k \in S_t} \hat{\mu}_k$. $\mathcal{E}^t = \emptyset$, add arms $k \in [N]$ which satisfy $\hat{\varphi}_k \geq \hat{\mu}_{k^{emp}(t)}$ to \mathcal{E}^t . e set $\mathcal{E}^t = [N]$. Sample $\theta_k \sim \mathcal{N}(\hat{\mu}_k, \hat{\sigma}_k)$. arm $k(t) = \arg \max_k \theta_k$ and decide the corrpution pattern $\mathcal{C}^t = k(t)$. atch data $[B^t]$, play the arm k(t) as the corruption pattern in Algorithm 2 and he reward $r_{k(t)}(t)$ from the attack result for the corrupted embedding $h_{i,a}^t$ = $, oldsymbol{h}_{i,a_C}^t], orall i \in [B^t]$ $h_{k(t)} = n_{k(t)} + 1, \ \hat{\mu}_{k(t)} = rac{\hat{\mu}_{k(t)}(n_{k(t)}-1) + r_{k(t)}(t)}{n_{k(t)}}, \ \hat{\sigma}_{k(t)} = rac{1}{n_{k(t)}+1}, \ r_{k(t)}^{\max} =$ $\hat{\varphi}_{k(t)}(t) \}, \hat{arphi}_{k(t)} = rac{\hat{arphi}_{k(t)}(n_{k(t)}-1) + r_{k(t)}^{\max}}{n_{k(t)}},$ $),\ldots,k(T)\}$

 $\widehat{\varphi}_{k(t)}$: empirical maximum reward of k(t). \mathcal{E}_t : competitive set at t round.

The Twelfth International Conference on Learning Representations (ICLR 2024)

The key idea of E-TS is to **limit the exploration within the competitive set**, which is defined using the expected maximum reward of each arm

Regret Analysis

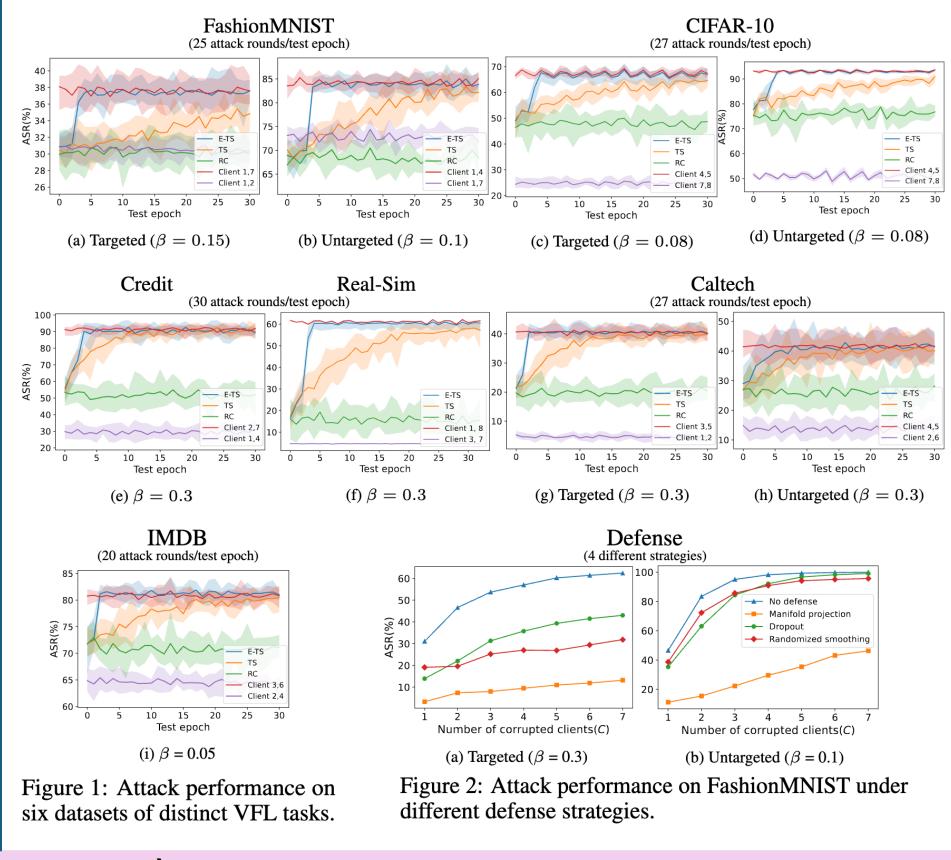
Lemma 1 (Expected pulling times of a non-competitive arm). Under the above assumption, for a non-competitive arm $k^{nc} \neq 1$ with $\tilde{\Delta}_{k^{nc},1} < 0$, the expected number of pulling times in T rounds, *i,e.*, $\mathbb{E}[n_{k^{nc}}(T)]$, is bounded by $\mathbb{E}[n_{k^{nc}}(T)] \leq \mathcal{O}(1)$.

Lemma 2 (Expected pulling times of a competitive but sub-optimal arm). Under the above assumption, the expected number of times pulling a competitive but sub-optimal arm k^{sub} with $\Delta_{k^{sub},1} \geq 0$ in T rounds is bounded as follows,

$$\mathbb{E}[n_{k^{sub}}(T)] = \sum_{t=1}^{T} \Pr(k(t) = k^{sub},$$

Theorem 1 (Upper bound on expected regret of E-TS). Let $D \leq N$ denote the number of competitive arms. Under the above assumption, the expected regret of the E-TS algorithm is upper bounded by $D\mathcal{O}(\log(T)) + (N-D)\mathcal{O}(1)$.

Note that the regret of traditional TS is bounded by $NO(\log(T))$.



 $(n_1(t) \ge \frac{t}{N}) \le \mathcal{O}(\log(T)).$