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Submodular Reinforcement Learning
Introduction

• Additive rewards
τ = (v1, v2, v6, v7)

F (τ) = r(v1) + r(v2) + r(v6) + r(v7)

What if τ = (v1, v2, v6, v2)
F (τ) ̸= r(v1) + r(v2) + r(v6) + r(v2)

• Non-additive rewards
F (τ) = r(v1, v2, v6)

• Submodularity: A set function F : 2V → R is
submodular if ∀A ⊆ B ⊆ V, e ∈ V\B, we have,

F (A ∪ {e}) − F (A) ≥ F (B ∪ {e}) − F (B)
=⇒ F (e|A) ≥ F (e|B)

• Diminishing returns: Value decreases if similar states
visited previously
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Applications

Informative path planning

flaticon.com

F (τ) = ρ
( ⋃

s∈τ

Ds︸︷︷︸
Disk

)

Bayesian D-experiment design

F (τ) = H(yτ ) − H(yτ |f)︸ ︷︷ ︸
I(yτ ;f)

Item collection

F (τ) =
∑

i

min(|τ ∩ gi|, di)
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Beyond classical RL
Relation to Submodular RL

Convex RL

Hazan et al. 2019
Zahavy et al. 2021

Submodular RL

Standard RL

3/7



Beyond classical RL
Relation to Submodular RL

Convex RL

Hazan et al. 2019
Zahavy et al. 2021

Submodular RL

Standard RL

3/7



Submodular reinforcement learning framework

• The environment is modelled using a Submodular MDP (SMDP)
which is a tuple formed by ⟨V, A, P, ρ, H, F ⟩.

• Agent’s policy: π(ah|τ0:h)
• Trajectory distribution:

f(τ ; π) = ρ(s0)
H−1∏
h=0

π(ah|τ0:h)P (sh+1|sh, ah)

• Objective: π⋆ = arg max
π∈Π

∑
τ
f(τ ; π)F (τ)︸ ︷︷ ︸
:=J(π)

v11v10v9v8

v7v6v5v4

v3v2v1v0

How well can one approximate the SubRL objective?

Theorem (SubRL hardness, informal)
SubRL is NP-hard to approximate up to any constant factor.

By reducing SubRL to a known hard-to-approximate problem — Submodular Orienteering Problem.
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Algorithm: submodular policy optimization (SubPO)

• Objective: θ⋆ ∈ arg max
θ∈Θ

J(πθ), where J(πθ) =
∑

τ

f(τ ; πθ)F (τ)

• Marginal gain: F (s|τ0:j) = F (τ0:j ∪ {s}) − F (τ0:j) (Greedy approach)

Theorem (SubPO)
Given an SMDP and the policy parameters θ, with any set function F ,

∇θJ(πθ) = E
τ∼f(τ ;π)

H−1∑
i=0

∇θ log πθ(ai|si)

H−1∑
j=i

F (sj+1|τ0:j)︸ ︷︷ ︸
marginal gain

−b(τ0:i)

 (1)

Can SubPO perform provably well?
• For dynamics similar to bandits, it recovers optimal approximation ratio of (1 − 1/e)
• For rewards function with bounded curvature, it guarantees constant factor approximation
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See you at our poster,
Wed 8th May, 4:30 PM,

Spotlight @ICLR 2024 !!!

Thank you for your attention !!!
Scan for paper !!!
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