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Background: Denoising Pre-training
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[1] Zaidi et al., Pre-training via denoising for molecular property prediction, ICLR 2023

[2] Feng et al., Fractional denoising for 3D molecular pre-training, ICML 2023
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Our Approach: Step 1. Energy Function

 Energy function:



Boltzmann Distribution

Our Approach: Step 2. Noise Design

 Energy function:

 Noise design：



Our Approach: Step 3. Force Field Learning

 Energy function:

 Noise design：

 Force field learning:

Molecular Force Field



Our Approach: Step 3. Force Field Learning
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Geometric Equivariant Transformer (GET)

Modifications to 

TorchMD-NET3

Angular information 

[3] Equivariant transformers for neural network based molecular potentials. ICLR 2022
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Denoising pre-training methods

Is SliDe More “Physical Consistent”?

Learned force field Ground-truth force field 



Molecular property prediction – QM9
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Table 1: Performance (MAE ↓) on 12 quantum chemistry property prediction in QM9. 



Molecular property prediction – MD17, ANI-1x
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Table 3: Performance (MAE ↓) 

on ANI-1x energy prediction 

(kcal/mol).

Table 2: Performance (MAE ↓) on MD17 force prediction (kcal/mol/ ̊A). 



Take Home Message

Physical consistency is important for molecular representation 
(especially for quantum downstream tasks), setting a new paradigm 
of explainable SSL: 

 Self-supervised tasks can be designed directly from physical quantities.

 The quality of physically Interpretable representation can be quantified by 

physical consistency   e.g. force field in SliDe

More interesting results in paper:

 Physical consistency as a new hyperparameter tuning approach.

 Good data scaling and robustness properties.

 Regularization term contributes to downstream transfer.

Waiting for you @ Poster Session 1,  Tue 7 May 10:45 -12:45 !


