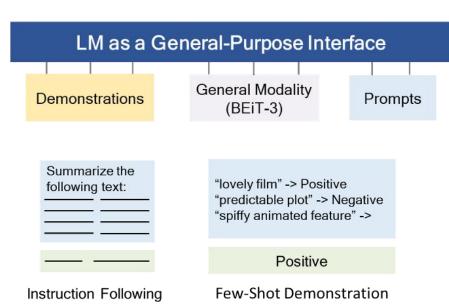
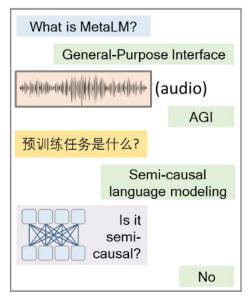

Zhiliang Peng*· Wenhui Wang*· Li Dong*· Yaru Hao · Shaohan Huang · Shuming Ma · Qixiang Ye · Furu Wei

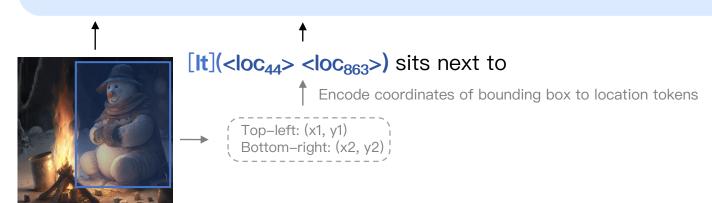


LLMs are General-Purpose Interfaces

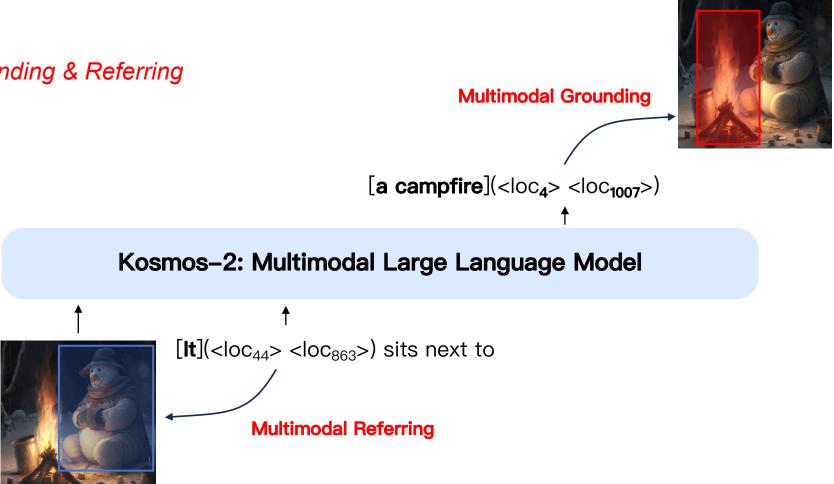


In-Context Learning

Multi-Turn Dialogue


Kosmos-2 Capabilities

- 1. Language & Vision-Language Mastery
- 2. Multimodal Grounding & Referring
- 3. Downstream Applications Potential



Kosmos-2: Multimodal Large Language Model

Multimodal Grounding & Referring

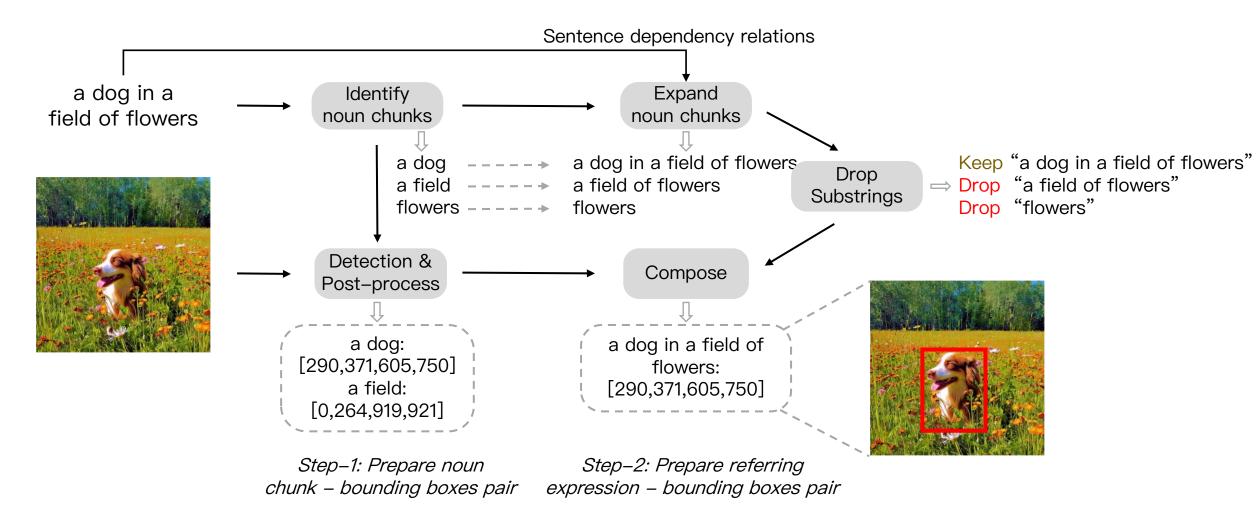
Hyperparameters	
Number of layers	24
Hidden size	2,048
FFN inner hidden size	8,192
Attention heads	32
Dropout	0.1
Attention dropout	0.1
Activation function	GeLU [HG16]
Vocabulary size	64,007
Soft tokens V size	64
Max length	2,048
Relative position embedding	$xPos [SDP^+22]$
Initialization	Magneto [WMH ⁺ 22]

Training Data

Text Corpora

Interleaved Image-Text Data

Grounded Image-Text Data


• Academic: NIH Exporter

• Internet: Pile-CC, OpenWebText2, Wikipedia (English), CC-2020-50, CC-2021-04, Realnews

• **Prose**: BookCorpus2, Books3, Gutenberg [RPJ+20], CC-Stories

Constructing Grounded Image-Text Data

Examples

Input Prompt

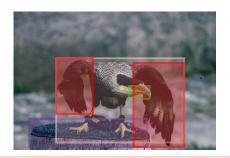
[The left eye of emoji]

Question: How many cows are here? Answer:

Question: What does it say? Answer:

Describe this bird in detail:

Completion


two cows present in the image.

"Je suis Charlie!" is written in French on a chalkboard.

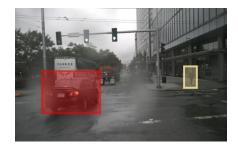
The eagle is a large bird with a black and white body and a yellow beak. It has large, dark wings and a pointed tail. It stands on a stump and spreads its wings, displaying its magnificent plumage.

Referring Expression Comprehension

Text Recogniction

Image Caption

Examples


Input Prompt

Question: Why is this animal unusual? Answer:

Question: What is it? Answer:

You are driving this car. To pick up that man, you need to

Question: What is the biggest difference betwen bottle-1 and bottle-2? Answer:

ompletion

This animal is unique because it is a turtle. Turtles are known for their slow and steady pace, whereas rabbits are known to be agile and quick. It is not common for a turtle to be faster than a rabbit, especially in terms of speed.

a buoy attached to the boat.

go through the intersection and turn right.

The biggest difference between bottle-1 and bottle-2 is the label.

Kosmos-2 Performance

Model	Zero-shot		Val Spl	it	Test Split		
	2010 51100	R@1	R@5	R@10	R@1	R@5	R@10
VisualBert (Li et al., 2019)	Х	70.4	84.5	86.3	71.3	85.0	86.5
MDETR (Kamath et al., 2021)	X	83.6	93.4	95.1	84.3	93.9	95.8
GLIP (Li et al., 2022b)	×	86.7	96.4	97.9	87.1	96.9	98.1
FIBER (Dou et al., 2022)	×	87.1	96.1	97.4	87.4	96.4	97.6
GRILL (Jin et al., 2023)	1	-	-		18.9	53.4	70.3
Kosmos-2	✓	77.8	79.2	79.3	78.7	80.1	80.1

Table 1: Phrase grounding results on Flickr30k Entities. We report the R@1, R@5, and R@10 metrics, where R@1/5/10 means calculating the recall using the top 1/5/10 generated bounding boxes.

Model	Setting	RefCOCOg		
Model	Setting	Meteor	CIDEr	
SLR (Yu et al., 2017)	Finetuning	15.4	59.2	
SLR+Rerank (Yu et al., 2017)	Finetuning	15.9	66.2	
	Zero-shot	12.2	60.3	
Kosmos-2	Few-shot $(k=2)$	13.8	62.2	
	Few-shot $(k=4)$	14.1	62.3	

Table 3: Results of referring expression generation on RefCOCOg.

Model	Zero-	RefCOCO			RefCOCO+			RefCOCOg	
	shot	val	testA	testB	val	testA	testB	val	test
UNITER (Chen et al., 2019)	Х	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75.77
MDETR (Kamath et al., 2021)	X	87.51	90.40	82.67	81.13	85.52	72.96	83.35	83.31
OFA (Wang et al., 2022c)	X	90.05	92.93	85.26	84.49	90.10	77.77	84.54	85.20
FIBER (Dou et al., 2022)	X	90.68	92.59	87.26	85.74	90.13	79.38	87.11	87.32
VisionLLM (Wang et al., 2023)	X	86.70	=	-	:=	=	_	-	-
GRILL (Jin et al., 2023)	1	-	_	-	25 <u>00</u>	_	-	_	47.50
Kosmos-2	1	52.32	57.42	47.26	45.48	50.73	42.24	60.57	61.65

Table 2: Accuracy of referring expression comprehension.

Kosmos-2 Performance

Rank	Model	Accuracy(%)	Rank	Model	Accuracy(%)	Rank	Model	Accuracy(%)
1	KOSMOS-2	63.36	1	InstructBLIP Vicuna	58.93	1	KOSMOS-2	43.96
2	InstructBLIP	60.29	2	InstructBLIP	58.49	2	InstructBLIP Vicuna	43.56
3	InstructBLIP Vicuna	60.20	3	KOSMOS-2	57.07	3	BLIP2	42.33
4	BLIP2	59.12	4	BLIP2	53.90	4	InstructBLIP	40.59
5	MiniGPT-4	56.27	5	MiniGPT-4	49.15	5	VideoChat	39.98
6	VPGTrans	51.87	6	mPLUG-Owl	45.33	6	MiniGPT-4	37.93
7	mPLUG-Owl	49.68	7	VPGTrans	44.13	7	mPLUG-Owl	36.71
8	VideoChat	47.12	8	VideoChat	43.80	8	VPGTrans	36.09
9	LLaMA-Adapter V2	45.22	9	Otter	38.56	9	LLaMA-Adapter V2	33.03
10	Otter	44.90	10	LLaMA-Adapter V2	38.50	10	Flan-T5	31.75
	(4) 0 111			(0) la atau a lala ati	_		(0) In a transaction and	

(1)	Scene	Understand	ding
---	----	-------	------------	------

(2) Instance Identity

(3) Instance Location

Rank	Model	Accuracy(%)	Rank	Model	Accuracy(%)	Rank	Model	Accuracy(%)
1	InstructBLIP Vicuna	40.33	1	KOSMOS-2	55.67	1	KOSMOS-2	60.72
2	InstructBLIP	38.66	2	BLIP2	55.67	2	MiniGPT-4	57.10
3	KOSMOS-2	37.90	3	InstructBLIP Vicuna	52.58	3	mPLUG-Owl	54.68
4	BLIP2	36.68	4	InstructBLIP	51.55	4	VPGTrans	53.17
5	VPGTrans	36.38	5	MiniGPT-4	47.42	5	LLaMA-Adapter V2	51.96
6	LLaMA-Adapter V2	35.46	6	mPLUG-Owl	44.33	6	Otter	51.36
7	VideoChat	34.55	7	VideoChat	42.27	7	MultiModal-GPT	51.36
8	mPLUG-Owl	32.72	8	LLaMA-Adapter V2	39.18	8	GVT	51.06
9	MiniGPT-4	32.57	9	Flan-T5	32.98	9	VideoChat	50.45
10	GVT	31.96	10	VPGTrans	31.96	10	OpenFlamingo	50.15

(4) Spatial Relations

(5) Instance Interaction

(6) Visual Reasoning

Thanks for your attention!

Paper

Official Code

Nvidia Host Demo

HF Space Demo