

Efficient ConvBN Blocks for Transfer Learning and Beyond

<u>Kaichao You</u>, Guo Qin, Anchang Bao, Meng Cao, Ping Huang, Jiulong Shan, Mingsheng Long International Conference on Learning Representations 2024 (Spotlight) Tsinghua University and Apple · May 7, 2024

TL;DR;

- This method is a builtin functionality of PyTorch since 2.2.
- Try it out if you use torch.compile!
 - Save up to 40% GPU memory without modifying your model.
 - No accuracy loss.

```
from torch._inductor import config as inductor_config
inductor_config.efficient_conv_bn_eval_fx_passes = True
model = torch.compile(model)
```

Agenda

- Introduction and background
- Method and theoretical analyses
- Application and experimental results
- Integration as PyTorch builtin functionality

Introduction and background

ConvBN blocks are popular in ConvNets

- When the model is deployed, BN will be merged into Conv
- When the model is fine-tuned, BN layers are often trained in Eval mode
 - e.g. 78.2% object detection training configs use this recipe

Can we exploit such optimization in fine-tuning?

BN, ers	

Method and theoretical analyses

Eval Mode:

Deploy Mode:

- Only convolution, very fast and efficient
- ... but not stable for training

Method and theoretical analyses

What's the problem of training in Deploy mode?

- Forward computation is equivalent with Eval
- But backward computation is different from Eval
- The inverse-scaling problem:
 - weight scaling $\omega' = \omega \cdot \frac{\gamma}{\sqrt{\hat{\sigma}^2 + \epsilon}}$
 - gradient inverse scaling $\frac{\partial J}{\partial \omega'} = \frac{\sqrt{\hat{\sigma}^2 + \epsilon}}{\gamma} \frac{\partial J}{\partial \omega}$
- It really hurts the stability of training!
 - Weight scales to 0.1x, gradient scales to 10x

Method and theoretical analyses

Solution: A new Tune mode

- Normalize and transform weight on the fly
- Equivalent with Eval mode
 - The same forward computation
 - The same backward computation
- More efficient than Eval mode
 - Less computation time and memory footprint
- More stable than Deploy mode
 - No more training stability problem

Application and experimental results

Efficiency comparison with Eval Mode:

- Tune mode uses 40% less memory footprint
- Tune mode takes 10% less computation time

orint time

Application and experimental results

Application in classification, detection, and adversarial example generation Better efficiency without hurting accuracy of Eval mode

					-		~					
Dataset	mode	Accuracy	Memory (GB)		Time (second/iteration)	Detector	Backbone	BatchSize	Precision	mode	mAP	Memory
CUB-200	Eval Tune	$\begin{array}{c} 82.62\ (\pm\ 0.14)\\ 83.20\ (\pm\ 0.00)\end{array}$	19.499 12.323 (36.80% ↓)		0.549 0.501 (8.74% ↓)	Faster RCNN	ResNet50	2	FP32	Eval Tune	0.3739 0.3728 (-0.0011)	3.857 3.003 (2)
Aircrafts	Eval Tune	$\begin{array}{c} 85.21 \ (\pm \ 0.22) \\ 85.90 \ (\pm \ 0.26) \end{array}$	19.497 12.321 (36.81% ↓)		0.548 0.505 (7.85% ↓)	Mask RCNN	ResNet50	2	FP32	Eval Tune	0.3824 0.3825 (+0.0001)	4.329 3.470 (1
Stanford Cars	Eval Tune	90.11 (\pm 0.03) 90.13 (\pm 0.12)	19.499 12.321 ((36.81%↓)	0.541 0.491 (9.24% ↓)	Mask RCNN	ResNet101	16	FP16	Eval Tune	0.3755 0.3756 (+0.0001)	13.687 9.980 (2 ′
	Time	cost		× • • • • • • • • • • • • • • • • • • •	Aemory footprint	Retina Net	ResNet50	2	FP32	Eval Tune	0.3675 0.3647 (-0.0028)	3.631 2.774 (2
SelecSLS - 0.294 0.273	7.14	4% Eval Tune	SelecSLS -	10.93 6.77	↓ 38.06% Eval	Faster RCNN	ResNet101	2	FP32	Eval Tune	0.3944 0.3921 (-0.0023)	5.781 4.183 (2
Res2NeXt - 0.236 DLA - 0.286 0.264	↓ 6.25%↓ 7.69	9%	Res2NeXt - DLA -	14. 8.22 1 9.45	.65 ↓ 43.89% 16.13 ↓ 41.41%	Faster RCNN	ResNext101	2	FP32	Eval Tune	0.4126 0.4131 (+0.0005)	6.980 4.773 (3
ResNeSt - 0.239 0.22	↓ 7.95%		ResNeSt -	15 8.49	5.17 ¥ 44.03%	Faster RCNN	RegNet	2	FP32	Eval Tune	0.3985 0.3995 (+0.0010)	4.361 3.138 (2
GhostNet - 0.35	0.577 0.548	¥ 5.03%	GhostNet - UNet -	11.85	18.18 ↓ 34.82% 19.11 ↓ 29.88%	Faster RCNN	HRNet	2	FP32	Eval Tune	0.4017 0.4031 (+0.0014)	8.504 5.463 (3
0.0 0.1 0.	2 0.3 Time / s	0.4 0.5 0.6 0 econd	.7 0		10 15 20 Memory / GB	Faster RCNN	RepVGG	16	FP16	Eval Tune	0.3350 0.3350 (+0.0000)	15.794 8.996 (4

Integration as PyTorch builtin functionality

The idea is simple and works great, but how to implement it?

Not easy to find ConvBN blocks because PyTorch and Python are so dynamic

- Finding ConvBN blocks are labor-intensive
 - e.g. self.conv1 + self.bn1
 - e.g. self.conv2 + self.nested.0
 - e.g. self.nested.1 + self.wrapped.mod

```
class WrappedBatchNorm(nn.Module):
   def __init__(self):
       super().__init__()
        self.mod = nn.BatchNorm2d(1)
   def forward(self, x):
        return self.mod(x)
class M(nn.Module):
   def __init__(self):
       super().__init__()
       self.conv1 = nn.Conv2d(1, 1, 1)
        self.bn1 = nn.BatchNorm2d(1)
       self.conv2 = nn.Conv2d(1, 1, 1)
       self.nested = nn.Sequential(
           nn.BatchNorm2d(1),
           nn.Conv2d(1, 1, 1),
        self.wrapped = WrappedBatchNorm()
```

```
def forward(self, x):
   x = self.conv1(x)
   x = self.bn1(x)
   x = self.conv2(x)
   x = self.nested(x)
   x = self.wrapped(x)
   return x
```

```
model = M()
```

Integration as PyTorch builtin functionality

The idea is simple and works great, but how to implement it?

Use deep learning compiler to automatically find ConvBN blocks!

- Now it is a PyTorch builtin functionality
- If you are using PyTorch \geq 2.2:
 - Use torch.compile
 - Turn on a config switch
 - ConvBN blocks will be automatically optimized!

from torch._inductor import config as inductor_config inductor_config.efficient_conv_bn_eval_fx_passes = True

model = torch.compile(model)

class WrappedBatchNorm(nn.Module): def __init__(self): super().__init__() self.mod = nn.BatchNorm2d(1) def forward(self, x): return self.mod(x) class M(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 1, 1) self.bn1 = nn.BatchNorm2d(1) self.conv2 = nn.Conv2d(1, 1, 1) self.nested = nn.Sequential(nn.BatchNorm2d(1), nn.Conv2d(1, 1, 1), self.wrapped = WrappedBatchNorm()

```
def forward(self, x):
   x = self.conv1(x)
   x = self.bn1(x)
   x = self.conv2(x)
   x = self.nested(x)
   x = self.wrapped(x)
   return x
```

model = M()

Conclusions

- Out-of-the-box acceleration within torch.compile
- Better efficiency without hurting accuracy of Eval mode.

More testimonials:

https://github.com/open-mmlab/mmengine/discussions/1252

Questions or comments?

youkaichao@gmail.com

