
Kaichao You, Guo Qin, Anchang Bao, Meng Cao, Ping Huang, Jiulong Shan, Mingsheng Long
International Conference on Learning Representations 2024 (Spotlight)
Tsinghua University and Apple · May 7, 2024

Efficient ConvBN Blocks for Transfer
Learning and Beyond

TL;DR;

• This method is a builtin functionality of PyTorch since 2.2.

• Try it out if you use torch.compile!

• Save up to 40% GPU memory without modifying your model.

• No accuracy loss.

from torch._inductor import config as inductor_config

inductor_config.efficient_conv_bn_eval_fx_passes = True

model = torch.compile(model)

Agenda

• Introduction and background

• Method and theoretical analyses

• Application and experimental results

• Integration as PyTorch builtin functionality

Introduction and background

ConvBN blocks are popular in ConvNets
• When the model is deployed, BN will be merged into Conv
• When the model is fine-tuned, BN layers are often trained in Eval mode

• e.g. 78.2% object detection training configs use this recipe

• Can we exploit such optimization in fine-tuning?

Eval Mode:
• Convolution + Normalization + Affine transformation

Deploy Mode:
• Only convolution, very fast and efficient
• … but not stable for training

Method and theoretical analyses

What’s the problem of training in Deploy mode?
• Forward computation is equivalent with Eval
• But backward computation is different from Eval
• The inverse-scaling problem:

• weight scaling
• gradient inverse scaling

• It really hurts the stability of training!
• Weight scales to 0.1x, gradient scales to 10x

Method and theoretical analyses

Solution: A new Tune mode
• Normalize and transform weight on the fly
• Equivalent with Eval mode

• The same forward computation
• The same backward computation

• More efficient than Eval mode
• Less computation time and memory footprint

• More stable than Deploy mode
• No more training stability problem

Method and theoretical analyses

Efficiency comparison with Eval Mode:
• Tune mode uses 40% less memory footprint
• Tune mode takes 10% less computation time

Application and experimental results

Application in classification, detection, and adversarial example generation
• Better efficiency without hurting accuracy of Eval mode

Application and experimental results

The idea is simple and works great, but how to implement it?

Not easy to find ConvBN blocks because PyTorch and Python are so dynamic
• Finding ConvBN blocks are labor-intensive

• e.g. self.conv1 + self.bn1
• e.g. self.conv2 + self.nested.0
• e.g. self.nested.1 + self.wrapped.mod

Integration as PyTorch builtin functionality

The idea is simple and works great, but how to implement it?

Use deep learning compiler to automatically find ConvBN blocks!
• Now it is a PyTorch builtin functionality
• If you are using PyTorch≥2.2:

• Use torch.compile
• Turn on a config switch
• ConvBN blocks will be automatically optimized!

Integration as PyTorch builtin functionality

Conclusions

• Out-of-the-box acceleration within torch.compile

• Better efficiency without hurting accuracy of Eval mode.

More testimonials:
	 https://github.com/open-mmlab/mmengine/discussions/1252

I used the maskrcnn model as a baseline to test the
difference of turning on this function. When the model
first started training, it could indeed save 13% of the
memory.

testing shows that it can save 33.8%
memory

 It reduced the memory from 4576Mb
to 2623Mb

Questions or comments?
youkaichao@gmail.com

https://github.com/open-mmlab/mmengine/discussions/1252
mailto:kaichao_you@apple.com

