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Local Composite Saddle Point Optimization
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Backgrou nd Local Composite Saddle Point Optimization

Saddle Point Optimization

e Objective: min max f(x
j mip mas f(x,y)

* Applications:
- Generative Adversarial Networks (GANSs)

Training set V} NN Discriminator
Ragdom 2 3 == rore
= %_
- Matrix Games - More ...
Lt — PI'OXg(/Lt)
Li4+1/2 = Prox Zt (779(%))
Ht+1 — Mt 779($t+1/2)
. Figure 1: Dual Extrapolation.
 Algorithms: © P
- Nemirovski’s Mirror Prox proximal operator Prox”, (-) = argmin{{-,z) + V" (z)}
- Nesterov’s Dual Extrapolation Bregman divergence V,;(x) = h(z) — h(z') — (Vh(z'),z — 2')
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Backgrou nd Local Composite Saddle Point Optimization

Distributed Optimization / Federated Learning

* Federated Averaging / Local SGD Algorithm 0 Typical FL Procedure
- A server coordinates collaborative learning among clients I: forr=20,1,...,R—1do
- " - tion dom e , 2:  Sample a subset of clients
- Cost of communication dominates the learning process 3. Distribute global model to clients
- Local updates to improve communication efficiency 4: for each client in parallel do
- Aggregates local models through averaging > for & :,O’ L, ’,K N 1 do
6: Certain optimization update
7: end for
e s . 8: Send local model to the server
wpdates ~ 4 ff‘°f’e' updates 9: end parallel for
RPA W P il P 10:  Server aggregates client models
H |occ|3ta — oo 'r.f;j‘f;”tv';‘r‘;dsk - — |o&|idata H 11: end fOI.
O(ija Thank you for the feedback u

 Distributed Saddle Point Optimization [Beznosikov et al., 2020; Hou et al., 2021]

_Ohiective: : _ 1 M
Objective: ;Iél)l{lIyIlEaJ}}( f(a:,y) i Zmzl fm(%y)
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Motivation Local Composite Saddle Point Optimization

Composite Optimization / Non-smooth Regularization

* Objective: minmaxo(w,y) = f(z,y) +¢1(z) —v2(y) where f(z,y) = 2 Yomet fr (2, 9)

¢ EXa l I l p I eS . SPARSE STRUCTURE
(]

- L, Regularization for sparsity

. Ax — b A\ Y .
}I{Iél)f{l I}I}&}}d X y) + Allx|[ Iyl 1

EEEEEEEE

- Nuclear norm regularization for low-rankness

min max Tr((AX — B)TY) + M| X[, — MY
XeX Ye)y m r

- Indicator function for constraints c X N R - H

0 it x € C
w(x) — { XTLX"m ~ WnXTHTXﬂl

400 otherwise

* None of existing distributed saddle point optimization algorithms can solve
composite objectives or objectives with constraints

;'J_;T;h I c L R E P URDUE Department of Computer Science
International Conference On

LA UNIVERSITY.



Motivation Local Composite Saddle Point Optimization

Federated Composite Optimization [Yuan et al., 2021]

* Curse of Primal Averaging in Federated Composite Optimization

- Specific regularization-imposed structure on the clients no i I I i
longer holds after direct averaging on the server - corver
- E.g. each client obtains a sparse solution, yet averaging the — I a,vera,gimg>
solutions across clients yields a dense solution = E I - = o
- Propose Federated Dual Averaging that aggregates the dual — —_
solutions before projection to the primal space sparse clients dense server
1
Be =T e (005 = 20)
Zrg1 — Zr + N\, — Server dual update

Wry1 — V(b 4+ nsne(r + 1) K)*(2741) — (Optional) primal output

 Federated Dual Averaging: Inferior Convergence for Saddle Point Optimization

- Single-step Methods (Mirror Desenct / Dual Averaging [Bubeck et al., 2015]): (’)(1/\/ T)
- Extra-step Methods (Mirror Prox [Nemirovski, 2004] / Dual Extrapolation[Nesterov, 2007]): C’)(l/T)
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Our Contribution

Local Composite Saddle Point Optimization

Federated Dual Extrapolation (FeDualEx)

Task

Method

Composite &
Constrained &
Non-Euclidean

Min

FedAvg
(Khaled et al., 2020)

X

FedDualAvg
(Yuan et al., 2021)

FeDualEx
(Ours)

Min-Max

Extra Step Local SGD
(Beznosikov et al., 2020)

SCCAFFOLD-S
(Hou et al., 2021)

FeDualEx
(Ours)

v
v
X
X
v

Present the first algorithm for saddle point
optimization with composite non-smooth
regularization under a distributed paradigm,
and derive its convergence rate

Showcase the structure-preserving (e.g.,
sparsity) advantage of FeDualEx achieved
through dual-space averaging

Present deterministic and stochastic dual
extrapolation for composite saddle point
optimization in the sequential setting

Demonstrate experimentally the
effectiveness of FeDualEx on various
composite saddle point tasks
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AlgO r|th m Local Composite Saddle Point Optimization

Federated Dual Extrapolation (FeDualEx)

Definition 3 (Generalized Bregman Divergence for Saddle Functions). The generalized distance-
generating function for the optimization of (1) is {;(z) = £(z)+tny(z), where £(z) = hi(x)+ha(y),
h1 and hy are distance-generating functions for x and vy, 1(z) = Y¥1(x) + Y2(y), 1 is the step size,
and t is the current number of iterations. It generates the following generalized Bregman divergence:

Vi(z) = le(2) = le(2) = (¢, 2 = ),
where <’ is the preimage of z' with respect to the gradient of the conjugate of ¥4, i.e., 2’ = VL5 ().

Definition 4 (Generalized Proximal Operator for Saddle Functions). A proximal operation in the

composite setting with generalized Bregman divergence for Saddle Functions is defined to be
~ . ~
Prox .. (g) = argmin{(g, =) + V(2)},

<

where ' is the dual image of 2/, i.e., 2’ = VU (¢"), and " € 00,(2") = VL(2") + ntoy(2").
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AlgO rlth m Local Composite Saddle Point Optimization

Federated Dual Extrapolation (FeDualEx)

Algorithm 1 FEDERATED-DUAL-EXTRAPOLATION (FeDualEx) for Composite SPP

Input: ¢(z) = f(z,y)+v1(z)—P2(y) = 7 Zi\,{:l fm(z,y)+11(x) —12(y): objective function;
¢(z): distance-generating function; g,,,(2) = (Vzfm(x,y), —Vy fim(x,y)): gradient operator.

Hyperparameters: [2: number of communication rounds; K : number of local update iterations; 1°:
server step size; n°: client step size.

Dual Initialization: ¢y = 0: initial dual variable, ¢: fixed point in the dual space.

Output: Approximate solution z = (z, y) to mingec xy max,cy ¢(z, y)

1: forr=0,1,..., R—1do

2:  Sample a subset of clients C. C [M]
3: for m € C). in parallel do
4: gr,r'j}() = Gr
5: for k=0,1,... K —1do
~ E’T’ - - :
6: 2, = Prox . 4 (g,,"j”k) > Two-step evaluation of the generalized proximal operator
~ Er,k—l—l
I: 2rh41/2 = LTOX S—sm, (7°9m (2753 &%)
3: Skl = Srke T 1°9m (2% 11725 &1 2) > Dual variable update
9: end for
10:  end parallel for
4 1
11: A"“ — 1C| ZmECr (g;TJK - g"thO)
12: G111 =¢ +n°A, > Server dual update
13: end for PP
14: Return: == > " "> " 2 p 172 With 2, 12 defined in (4).
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VY E Theorem Local Composite Saddle Point Optimization

Assumptions For the composite saddle function ¢(z,y) = M Z;ﬁ (T, y) + Y1 (x) — Ya(y),
its gradient operator is given by g = (Vo f, —Vyf) and g = - Z _1 Gm. We assume that

a.(Convexity of f)Vm € M|, fn(x,y) is convex in x and concave in y.
b.(Convexity of 1) 11 (x) is convex in x, and 15 (y) is convex in y.

c.(Lipschitzness of g) gm(z) = [_Vv””f?nffa’f;>] is B-Lipschitz: ||gm(z) — gm(2')[« < Bllz = 2|
d.(Unbiased Estimate and Bounded Variance) Ym € |M]|, for random sample &™,
e [9m (25 €™)] = gm(2™), and Ee [[|gm (2™ €™) — gm (2™)[|7] <

e. (Bounded Gradient) Vm € | M|, ™)« <G

f. The distance-generating function ¢ is a Legendre function that is I-strongly convex, i.e., ¥z, 2/,

U(2') —U(z) — (VL(2),2" — z) > =||2/ — 2]
2. The optimization domain Z is compact w.r.t. Bregman divergence, i.e.,Vz,z' € Z, VZE, (z) < B.

Theorem 1 (Main). Under assumptions, the duality gap evaluated with the ergodic sequence
generated by the intermediate steps of FeDualEx in Algorithm 1 is bounded by

— — 5:8B  2013:G3iB1  530B*  2i83G3Bi
{Gap( Z Z ’f‘k+1/2)] > | 13 | e ——— 1 '
RKTOk_ RK Kz Rz M2 R2 K2 R>
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Other SEttingS Local Composite Saddle Point Optimization

Distributed Composite Convex Optimization [Yuan et al., 2021}

Theorem 2. Under the convex counterparts of previous assumptions, choosing step size 1° =

1 1
min{ — B 4 B2M2 B ?; -}, the ergodic intermediate sequence gener-
528  20182G2K1R1 520R2K?2 2383G3KR3

ated by FeDualEx for composite convex objectives satisfies

— — 5:8B  201$:G:B%  5igBi  23f35GiBS
sz’f’fﬂq/? ()}S | 1.3 | 1.1 .1 | z '
RKTOkO RK Kz Rzxa M2 Rz K2 R3

Stochastic Composite Saddle Point Optimization [Mishchenko et al., 2020]

Theorem 3. Under the sequential versions of previous assumptions, Vz € Z, choosing step size

1
n = min{ — 153 i 1 }, the ergodic intermediate sequence of stochastic dual extrapolation satisfies
1 1
. T—-1 33 BB |, 32gB2
8| Gap(F 2210 2e+1/2)] < 55 A L

Deterministic Composite Saddle Point Optimization [He et al., 2015]

Theorem 4. Under the basic convexity assumption and [3-Lipschitzness of g, Vz € Z and n < 5,

~T—1 8B

composite dual extrapolation satisfies Gap(T o Zt+1/2) <
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Local Composite Saddle Point Optimization

Experiments

A

Composite Bilinear Saddle Point Problem

—— FeDualEx —w»=- FedMiP FedDualAvg --e-- FedMID - == EXxtraSteplLocalSGD(Subgrad+Projection)
1.0 o ———] [remmmmmm—m——=—- 10— — =
. \ 1] 8, ‘M&—-»aw-muw-wv'
min max(Ax — b,y) + x|, — Ally|: > |\ § o SN
xeX ye)y © 0.8/ 1 \ - oot | O \
nXm m R 2 10° 5 0-8] N\
A. E R ’ X — {R : X o0 S D}’ mo 6 """" Cenn,, RN e S TR S ng - Vp)] \v ._'i‘;
o " - . 10_1 *m\“_*‘ O 6 "\-.\.._!..!.7‘"'
b € R, Y = {R Yo < D}- 0 2000 4000 0 2000 4000 0 200 400 0 200 400

Communication Rounds Communication Rounds

(b) Ten Local Updates (K = 10)

Communication Rounds Communication Rounds

(a) One Local Update (K = 1)

Figure 4: Duality gap and sparsity of the solution for #; regularized SPP with /., constraint.
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Figure 5: Duality gap and rank of the solution to the nuclear norm regularized SPP.
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Experiments

Local Composite Saddle Point Optimization

Universal Adversarial Training of Logistic Regression

—eo— FeDualEx

-+« — Projected Gradient Descent Ascent
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Communication Rounds

(a) MNIST

L OSsS

accuracy of logistic regression on unattacked data.

Communication Rounds

(b) CIFAR-10
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Communication Rounds

Communication Rounds

min
wEeRd

Imax

n

[6]|cc <D M “—

1=1

(w ' (x; +6),y;) + A6l

(a) FeDualEx

(b) PGDA

Figure 7: Attack generated from the

Figure 6: Universal adversarial training loss and validation universal-adversarially trained logistic
regression on MNIST and CIFAR-10.
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