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Composite Saddle Point Optimization. We study composite saddle point optimization. Its
objective is formally given in the following definition.
Definition 1 (Composite SPP). The objective of composite saddle point optimization is defined as

min
x2X

max
y2Y

�(x, y) = f(x, y) +  1(x)�  2(y) (1)

where f(x, y) = 1
M

PM
m=1 fm(x, y) and  1(x),  2(y) are possibly non-smooth.

It is typically evaluated by the duality gap: Gap(x̂, ŷ) = maxy2Y �(x̂, y)�minx2X �(x, ŷ).

xt = Prox
h
x̄(µt)
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h
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µt+1 = µt + ⌘g(xt+1/2)

Figure 1: Dual Extrapolation.

Mirror Prox and Dual Extrapolation. Mirror prox (Ne-
mirovski, 2004) and dual extrapolation (Nesterov, 2007) are
classic methods for convex-concave SPP. Both are proxi-
mal algorithms based on the proximal operator defined as
Prox

h
x0(·) = argminx{h·, xi + V h

x0(x)}, in which V h
x0(x) =

h(x)� h(x0
)� hrh(x0

), x� x0
i is the Bregman divergence

generated by some closed, strongly convex, and differentiable
function h. Both algorithms conduct two evaluations of the proximal operator, while dual extrapola-
tion carries out updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with
the proximal operator as in (Cohen et al., 2021), with details in Appendix C.1.

Generalized Bregman Divergence. Recent advances in composite convex optimization (Yuan
et al., 2021) have utilized the Generalized Bregman Divergence (Flammarion & Bach, 2017) for
analyzing composite objectives. It incorporates the composite term into the distance-generating
function of the vanilla Bregman divergence, and measures the distance in terms of one variable and
the dual image of the other, with the key insight being the conjugate of a non-smooth generalized
distance-generating function is differentiable.
Definition 2 (Generalized Bregman Divergence (Flammarion & Bach, 2017)). Generalized Bregman

divergence is defined to be Ṽ ht
µ0 (x) = ht(x)�ht(rh⇤

t (µ
0
))�hµ0, x�rh⇤

t (µ
0
)i, where ht = h+t⌘ 

is a generalized distance-generating function that is closed and strongly convex, t is the current

number of iterations, ⌘ is the step size, h⇤
t is the convex conjugate of ht, and µ0

is the dual image of

x0
, i.e., µ0

2 @ht(x0
) and x0

= rh⇤
t (µ

0
).

Generalized Bregman divergence is suitable not only for non-smooth regularization but also for any
convex constraints C, taking  (x) = 0 if x 2 C and +1 otherwise.

4 FEDERATED DUAL EXTRAPOLATION (FEDUALEX)

To tackle composite SPP in the DO paradigm, we acknowledge the challenges from several aspects.
Specifically, the generality afforded by composite and/or saddle point problems results in a need for
more sophisticated techniques that work with this additional structure. These concerns are further
complicated by the challenges that arise for DO, where communication and aggregation need to be
carefully handled under the distributed mechanism. In particular, Yuan et al. (2021) identified the “the
curse of primal averaging” in composite federated optimization and advocated for dual aggregation.
Dealing with these challenges altogether is rather non-trivial, as the techniques that are naturally
suited for one would fail for another. In this regard, we first present FeDualEx (Algorithm 1) and
several relevant novel definitions proposed for its adaptation to composite SPP. Then we analyze the
convergence rate in the homogeneous setting.

4.1 THE FEDUALEX ALGORITHM

FeDualEx builds its core on the classic dual extrapolation, an extra-step algorithm geared for saddle
point optimization. Its effectiveness has been widely verified in vanilla smooth convex-concave
SPP. Furthermore, its updating sequence lies in the dual space which would naturally inherit the
advantage of dual aggregation in composite federated optimization. The challenge remains for
composite optimization, as relevant work is limited, and the existing composite extension for the
extra-step method (He et al., 2015) is quite technically involved. Given that the smooth analysis
of dual extrapolation is already non-trivial (Nesterov, 2007), no attempts were previously made for
generalizing dual extrapolation to the composite optimization realm.
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• Objective:

• Applications:
 - Generative Adversarial Networks (GANs)    - Multi-agent Reinforcement Learning

 - Matrix Games         - More …
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• Algorithms:
 - Nemirovski’s Mirror Prox
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dual extrapolation as well as techniques for composite convex optimization. We close this section with the
basic mechanism of federated learning. To begin with, we lay out the notations.

Notations. We use [n] to represent the set {1, 2, ..., n}. We use k · k to denote an arbitrary norm, k · k⇤ to
denote the dual norm, and k · k2 to denote the Euclidean norm. We use r for gradients, @ for subgradients,
and h·, ·i for inner products. Related to the algorithm, we use English letters (e.g., z, x, y) to denote primal
variables, Greek letters (e.g., !, &, µ, ⌫) to denote dual variables. We use R for communication rounds, K
for local updates, B for diameter bound, G for gradient bound, � for smoothness constant, � for standard
deviation, ⇠ for random samples. We use h⇤ to denote the convex conjugate of a function h.

3.1 Composite Saddle Point Optimization

Due to practical interest and lack of e↵ective methods in FL, we study composite saddle point optimization.
Its objective is formally given in the following definition.

Definition 1 (Composite SPP). The objective of composite saddle point optimization is defined as

min
x2X

max
y2Y

�(x, y) = f(x, y) +  1(x)�  2(y) (1)

where f(x, y) = 1
M

PM
m=1 fm(x, y) and  1(x),  2(y) are possibly non-smooth.

It is typically evaluated by the duality gap: Gap(x̂, ŷ) = maxy2Y �(x̂, y)�minx2X �(x, ŷ).

3.2 Mirror Prox and Dual Extrapolation

xt = Prox h
x̄(µt)

xt+1/2 = Prox h
xt
(⌘g(xt))

µt+1 = µt + ⌘g(xt+1/2)

Figure 1: Dual Extrapolation.

Mirror prox (Nemirovski, 2004) and dual extrapolation (Nes-
terov, 2007) are classic methods for convex-concave SPP. Both
are proximal algorithms based on the proximal operator defined
as

Prox h
x0(·) = argmin

x
{h·, xi+ V h

x0(x)},

in which V h
x0(x) is the Bregman divergence generated by some

closed, strictly convex, and di↵erentiable function h, and is defined as follows:

V h
x0(x) = h(x)� h(x0)� hrh(x0), x� x0

i.

Both algorithms conduct two evaluations of the proximal operator, while dual extrapolation carries out
updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with the proximal operator
as in (Cohen et al., 2021), with details in Appendix C.1.

3.3 Generalized Bregman Divergence

Recent advances in composite convex optimization (Yuan et al., 2021) have utilized the Generalized Bregman
Divergence (Flammarion and Bach, 2017) for analyzing composite objectives. It incorporates the composite
term into the distance-generating function of the vanilla Bregman divergence, and measures the distance
in terms of one variable and the dual image of the other, with the key insight being the conjugate of a
non-smooth generalized distance-generating function is di↵erentiable.

Definition 2 (Generalized Bregman Divergence (Flammarion and Bach, 2017)). Generalized Bregman di-

vergence is defined to be Ṽ ht
µ0 (x) = ht(x)�ht(rh⇤

t (µ
0))�hµ0, x�rh⇤

t (µ
0)i, where ht = h+t⌘ is a generalized

distance-generating function that is closed and strictly convex, t is the current number of iterations, ⌘ is the

step size, h⇤
t is the convex conjugate of ht, and µ0

is the dual image of x0
, i.e., µ0

2 @ht(x0) and x0 = rh⇤
t (µ

0).

Generalized Bregman divergence is suitable not only for non-smooth regularization but also for any convex

constraints C, taking  (x) =

(
0 if x 2 C

+1 otherwise
.
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Local Composite Saddle Point OptimizationBackground

Distributed Optimization / Federated Learning

• Federated Averaging / Local SGD
 - A server coordinates collaborative learning among clients

 - Cost of communication dominates the learning process

- Local updates to improve communication efficiency

 - Aggregates local models through averaging

3.4 Federated Learning

Algorithm 0 Typical FL Procedure

1: for r = 0, 1, . . . , R� 1 do
2: Sample a subset of clients
3: Distribute global model to clients
4: for each client in parallel do
5: for k = 0, 1, . . . ,K � 1 do
6: Certain optimization update
7: end for
8: Send local model to the server
9: end parallel for

10: Server aggregates client models
11: end for

Federated Learning is a novel distributed learning paradigm
where a central server coordinates collaborative learning among
clients through rounds of communication. In each round, the
server synchronizes the clients with the current global model.
Each client participating in this round optimizes the model
locally, possibly for several steps, without sharing data, then
sends the model to the server. The server then aggregates the
models from clients, usually through averaging (Stich, 2019),
and produces a new global model. The local optimization algo-
rithms can vary based on the objective of interest. This typical
procedure is followed by many (McMahan et al., 2017; Yuan
et al., 2021), FeDualEx included, and is summarized in Algo-
rithm 0.

4 Federated Dual Extrapolation (FeDualEx)

In this section, we give our solution to the federated learning of composite saddle point problems. We first
present the FeDualEx algorithm and several relevant novel definitions we proposed for its adaptation to
composite SPP. As a preview, FeDualEx is presented in Algorithm 1. Then we analyze the convergence rate
for FeDualEx.

4.1 The FeDualEx Algorithm

To tackle composite SPP in the FL paradigm, we acknowledge the challenges from two aspects. The first
comes from composite optimization, which is by itself a complication in sequential saddle point optimization,
even convex optimization. The second rises for federated learning, where communication and aggregation
need to be carefully handled under the distributed mechanism. In particular, Yuan et al. (2021) identified
the “the curse of primal averaging” in composite federated optimization and advocates for dual aggregation.

With this inspiration, FeDualEx builds its core on the classic dual extrapolation algorithm geared for sad-
dle point optimization. Its e↵ectiveness has been widely verified in vanilla smooth convex-concave SPP.
Furthermore, its updating sequence lies in the dual space which would naturally inherit the advantage of
dual aggregation in composite federated optimization. The challenge remains for composite optimization, as
relevant work is limited. The smooth analysis of dual extrapolation is already non-trivial (Nesterov, 2007),
and no attempts were previously made for generalizing dual extrapolation to the composite optimization
realm.

Further inspired by recent advances in composite convex optimization, we recognize the Generalized Bregman
Divergence (Flammarion and Bach, 2017) as a powerful tool for analyzing proximal methods for composite
objectives. A detailed introduction is provided in Appendix C.1.

Adapting to the context of composite SPP, we make a further extension to the Generalized Bregman Diver-
gence for saddle functions, and provide the definition below.

Definition 3 (Generalized Bregman Divergence for Saddle Functions). The generalized distance-generating
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Composite Saddle Point Optimization. We study composite saddle point optimization. Its
objective is formally given in the following definition.
Definition 1 (Composite SPP). The objective of composite saddle point optimization is defined as

min
x2X

max
y2Y

�(x, y) = f(x, y) +  1(x)�  2(y) (1)

where f(x, y) = 1
M

PM
m=1 fm(x, y) and  1(x),  2(y) are possibly non-smooth.

It is typically evaluated by the duality gap: Gap(x̂, ŷ) = maxy2Y �(x̂, y)�minx2X �(x, ŷ).
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Figure 1: Dual Extrapolation.

Mirror Prox and Dual Extrapolation. Mirror prox (Ne-
mirovski, 2004) and dual extrapolation (Nesterov, 2007) are
classic methods for convex-concave SPP. Both are proxi-
mal algorithms based on the proximal operator defined as
Prox

h
x0(·) = argminx{h·, xi + V h

x0(x)}, in which V h
x0(x) =

h(x)� h(x0
)� hrh(x0

), x� x0
i is the Bregman divergence

generated by some closed, strongly convex, and differentiable
function h. Both algorithms conduct two evaluations of the proximal operator, while dual extrapola-
tion carries out updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with
the proximal operator as in (Cohen et al., 2021), with details in Appendix C.1.

Generalized Bregman Divergence. Recent advances in composite convex optimization (Yuan
et al., 2021) have utilized the Generalized Bregman Divergence (Flammarion & Bach, 2017) for
analyzing composite objectives. It incorporates the composite term into the distance-generating
function of the vanilla Bregman divergence, and measures the distance in terms of one variable and
the dual image of the other, with the key insight being the conjugate of a non-smooth generalized
distance-generating function is differentiable.
Definition 2 (Generalized Bregman Divergence (Flammarion & Bach, 2017)). Generalized Bregman

divergence is defined to be Ṽ ht
µ0 (x) = ht(x)�ht(rh⇤

t (µ
0
))�hµ0, x�rh⇤

t (µ
0
)i, where ht = h+t⌘ 

is a generalized distance-generating function that is closed and strongly convex, t is the current

number of iterations, ⌘ is the step size, h⇤
t is the convex conjugate of ht, and µ0

is the dual image of

x0
, i.e., µ0

2 @ht(x0
) and x0

= rh⇤
t (µ

0
).

Generalized Bregman divergence is suitable not only for non-smooth regularization but also for any
convex constraints C, taking  (x) = 0 if x 2 C and +1 otherwise.

4 FEDERATED DUAL EXTRAPOLATION (FEDUALEX)

To tackle composite SPP in the DO paradigm, we acknowledge the challenges from several aspects.
Specifically, the generality afforded by composite and/or saddle point problems results in a need for
more sophisticated techniques that work with this additional structure. These concerns are further
complicated by the challenges that arise for DO, where communication and aggregation need to be
carefully handled under the distributed mechanism. In particular, Yuan et al. (2021) identified the “the
curse of primal averaging” in composite federated optimization and advocated for dual aggregation.
Dealing with these challenges altogether is rather non-trivial, as the techniques that are naturally
suited for one would fail for another. In this regard, we first present FeDualEx (Algorithm 1) and
several relevant novel definitions proposed for its adaptation to composite SPP. Then we analyze the
convergence rate in the homogeneous setting.

4.1 THE FEDUALEX ALGORITHM

FeDualEx builds its core on the classic dual extrapolation, an extra-step algorithm geared for saddle
point optimization. Its effectiveness has been widely verified in vanilla smooth convex-concave
SPP. Furthermore, its updating sequence lies in the dual space which would naturally inherit the
advantage of dual aggregation in composite federated optimization. The challenge remains for
composite optimization, as relevant work is limited, and the existing composite extension for the
extra-step method (He et al., 2015) is quite technically involved. Given that the smooth analysis
of dual extrapolation is already non-trivial (Nesterov, 2007), no attempts were previously made for
generalizing dual extrapolation to the composite optimization realm.
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dual extrapolation as well as techniques for composite convex optimization. We close this section with the
basic mechanism of federated learning. To begin with, we lay out the notations.

Notations. We use [n] to represent the set {1, 2, ..., n}. We use k · k to denote an arbitrary norm, k · k⇤ to
denote the dual norm, and k · k2 to denote the Euclidean norm. We use r for gradients, @ for subgradients,
and h·, ·i for inner products. Related to the algorithm, we use English letters (e.g., z, x, y) to denote primal
variables, Greek letters (e.g., !, &, µ, ⌫) to denote dual variables. We use R for communication rounds, K
for local updates, B for diameter bound, G for gradient bound, � for smoothness constant, � for standard
deviation, ⇠ for random samples. We use h⇤ to denote the convex conjugate of a function h.

3.1 Composite Saddle Point Optimization

Due to practical interest and lack of e↵ective methods in FL, we study composite saddle point optimization.
Its objective is formally given in the following definition.

Definition 1 (Composite SPP). The objective of composite saddle point optimization is defined as

min
x2X

max
y2Y

�(x, y) = f(x, y) +  1(x)�  2(y) (1)

where f(x, y) = 1
M

PM
m=1 fm(x, y) and  1(x),  2(y) are possibly non-smooth.

It is typically evaluated by the duality gap: Gap(x̂, ŷ) = maxy2Y �(x̂, y)�minx2X �(x, ŷ).

3.2 Mirror Prox and Dual Extrapolation
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µt+1 = µt + ⌘g(xt+1/2)

Figure 1: Dual Extrapolation.

Mirror prox (Nemirovski, 2004) and dual extrapolation (Nes-
terov, 2007) are classic methods for convex-concave SPP. Both
are proximal algorithms based on the proximal operator defined
as

Prox h
x0(·) = argmin

x
{h·, xi+ V h

x0(x)},

in which V h
x0(x) is the Bregman divergence generated by some

closed, strictly convex, and di↵erentiable function h, and is defined as follows:

V h
x0(x) = h(x)� h(x0)� hrh(x0), x� x0

i.

Both algorithms conduct two evaluations of the proximal operator, while dual extrapolation carries out
updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with the proximal operator
as in (Cohen et al., 2021), with details in Appendix C.1.

3.3 Generalized Bregman Divergence

Recent advances in composite convex optimization (Yuan et al., 2021) have utilized the Generalized Bregman
Divergence (Flammarion and Bach, 2017) for analyzing composite objectives. It incorporates the composite
term into the distance-generating function of the vanilla Bregman divergence, and measures the distance
in terms of one variable and the dual image of the other, with the key insight being the conjugate of a
non-smooth generalized distance-generating function is di↵erentiable.

Definition 2 (Generalized Bregman Divergence (Flammarion and Bach, 2017)). Generalized Bregman di-

vergence is defined to be Ṽ ht
µ0 (x) = ht(x)�ht(rh⇤

t (µ
0))�hµ0, x�rh⇤

t (µ
0)i, where ht = h+t⌘ is a generalized

distance-generating function that is closed and strictly convex, t is the current number of iterations, ⌘ is the

step size, h⇤
t is the convex conjugate of ht, and µ0

is the dual image of x0
, i.e., µ0

2 @ht(x0) and x0 = rh⇤
t (µ

0).

Generalized Bregman divergence is suitable not only for non-smooth regularization but also for any convex

constraints C, taking  (x) =

(
0 if x 2 C

+1 otherwise
.
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min
x2X

max
y2Y

hAx� b,yi+ �kxk1 � �kyk1

A 2 Rn⇥m, X = {Rm
: kxk1  D},

b 2 Rn, Y = {Rn
: kyk1  D}.

Figure 2: The composite SPP with `1 regular-
ization for sparsity (Jiang & Mokhtari, 2022).

min
X2X

max
Y2Y

Tr
�
(AX�B)

>Y
�
+ �kXk⇤ � �kYk⇤

A 2 Rn⇥m, X = {Rm⇥p
: kXk2  D},

B 2 Rn⇥p, Y = {Rn⇥p
: kYk2  D}.

Figure 3: The composite SPP with nuclear norm low-
rank regularization.

Deterministic Composite Saddle Point Optimization Further removing the noise in gradient,
FeDualEx reduces to a deterministic algorithm for composite SPP. Even so, we are still generalizing
the classic dual extrapolation algorithm to CO, and thus term the algorithm Deterministic FeDualEx

or Composite Dual Extrapolation. Following a similar analysis, we are able to get the O(
1
T ) rate as

in previous work for CO (He et al., 2015) as well as the smooth dual extrapolation (Nesterov, 2007).
The proof for Theorem 4 is in Appendix G.2, which is a much simpler one based on the recently
proposed Relative Lipschitzness (Cohen et al., 2021).
Theorem 4. Under the basic convexity assumption and �-Lipschitzness of g, 8z 2 Z and ⌘ 

1
� ,

composite dual extrapolation satisfies Gap(
1
T

PT�1
t=0 zt+1/2) 

�B
T .

6 EXPERIMENTS

To complement our largely theoretical results, we verify in this section the effectiveness of FeDualEx
by numerical evaluation. Additional experiments and detailed settings are deferred to Appendix A.

Composite Bilinear SPP. We first test FeDualEx on composite bilinear problems with synthetic data.
The problems considered are demonstrated in Figure 2 and 3, in which m = 600, n = 300, p = 20,
� = 0.1, D = 0.05. The corresponding composite terms are `1 regularization with `1 ball constraint
and nuclear regularization with spectral constraint. The purpose of `1 regularization is to encourage
sparsity and nuclear regularization to encourage a solution with low rank.

We compare FeDualEx against FedDualAvg, FedMiD (Yuan et al., 2021), and FedMiP proposed
in Algorithm 2 in Appendix H. We note that methods like Extra Step Local SGD (Beznosikov
et al., 2020) and SCAFFOLD-S (Karimireddy et al., 2020) are not suited to problems with non-
smooth terms, but we include one of them for completeness, given that their rates are similar. For
such a comparison, one can only compute the sub-gradient instead of the gradient (which does not
everywhere exist). Projection needs to be applied as well to account for the constraints.

(a) One Local Update (K = 1) (b) Ten Local Updates (K = 10)

Figure 4: Duality gap and sparsity of the solution for `1 regularized SPP with `1 constraint.

(a) K = 1

(b) K = 10

Figure 5: Duality gap and rank of the solution to the nuclear norm regularized SPP.
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as
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closed, strictly convex, and di↵erentiable function h, and is defined as follows:
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x0(x) = h(x)� h(x0)� hrh(x0), x� x0
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Both algorithms conduct two evaluations of the proximal operator, while dual extrapolation carries out
updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with the proximal operator
as in (Cohen et al., 2021), with details in Appendix C.1.

3.3 Generalized Bregman Divergence

Recent advances in composite convex optimization (Yuan et al., 2021) have utilized the Generalized Bregman
Divergence (Flammarion and Bach, 2017) for analyzing composite objectives. It incorporates the composite
term into the distance-generating function of the vanilla Bregman divergence, and measures the distance
in terms of one variable and the dual image of the other, with the key insight being the conjugate of a
non-smooth generalized distance-generating function is di↵erentiable.
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classic methods for convex-concave SPP. Both are proxi-
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i is the Bregman divergence

generated by some closed, strongly convex, and differentiable
function h. Both algorithms conduct two evaluations of the proximal operator, while dual extrapola-
tion carries out updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with
the proximal operator as in (Cohen et al., 2021), with details in Appendix C.1.

Generalized Bregman Divergence. Recent advances in composite convex optimization (Yuan
et al., 2021) have utilized the Generalized Bregman Divergence (Flammarion & Bach, 2017) for
analyzing composite objectives. It incorporates the composite term into the distance-generating
function of the vanilla Bregman divergence, and measures the distance in terms of one variable and
the dual image of the other, with the key insight being the conjugate of a non-smooth generalized
distance-generating function is differentiable.
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Generalized Bregman divergence is suitable not only for non-smooth regularization but also for any
convex constraints C, taking  (x) = 0 if x 2 C and +1 otherwise.

4 FEDERATED DUAL EXTRAPOLATION (FEDUALEX)

To tackle composite SPP in the DO paradigm, we acknowledge the challenges from several aspects.
Specifically, the generality afforded by composite and/or saddle point problems results in a need for
more sophisticated techniques that work with this additional structure. These concerns are further
complicated by the challenges that arise for DO, where communication and aggregation need to be
carefully handled under the distributed mechanism. In particular, Yuan et al. (2021) identified the “the
curse of primal averaging” in composite federated optimization and advocated for dual aggregation.
Dealing with these challenges altogether is rather non-trivial, as the techniques that are naturally
suited for one would fail for another. In this regard, we first present FeDualEx (Algorithm 1) and
several relevant novel definitions proposed for its adaptation to composite SPP. Then we analyze the
convergence rate in the homogeneous setting.
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SPP. Furthermore, its updating sequence lies in the dual space which would naturally inherit the
advantage of dual aggregation in composite federated optimization. The challenge remains for
composite optimization, as relevant work is limited, and the existing composite extension for the
extra-step method (He et al., 2015) is quite technically involved. Given that the smooth analysis
of dual extrapolation is already non-trivial (Nesterov, 2007), no attempts were previously made for
generalizing dual extrapolation to the composite optimization realm.
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function of the vanilla Bregman divergence, and measures the distance in terms of one variable and
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To tackle composite SPP in the DO paradigm, we acknowledge the challenges from several aspects.
Specifically, the generality afforded by composite and/or saddle point problems results in a need for
more sophisticated techniques that work with this additional structure. These concerns are further
complicated by the challenges that arise for DO, where communication and aggregation need to be
carefully handled under the distributed mechanism. In particular, Yuan et al. (2021) identified the “the
curse of primal averaging” in composite federated optimization and advocated for dual aggregation.
Dealing with these challenges altogether is rather non-trivial, as the techniques that are naturally
suited for one would fail for another. In this regard, we first present FeDualEx (Algorithm 1) and
several relevant novel definitions proposed for its adaptation to composite SPP. Then we analyze the
convergence rate in the homogeneous setting.

4.1 THE FEDUALEX ALGORITHM

FeDualEx builds its core on the classic dual extrapolation, an extra-step algorithm geared for saddle
point optimization. Its effectiveness has been widely verified in vanilla smooth convex-concave
SPP. Furthermore, its updating sequence lies in the dual space which would naturally inherit the
advantage of dual aggregation in composite federated optimization. The challenge remains for
composite optimization, as relevant work is limited, and the existing composite extension for the
extra-step method (He et al., 2015) is quite technically involved. Given that the smooth analysis
of dual extrapolation is already non-trivial (Nesterov, 2007), no attempts were previously made for
generalizing dual extrapolation to the composite optimization realm.
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Deterministic Composite Saddle Point Optimization Further removing the noise in gradient,
FeDualEx reduces to a deterministic algorithm for composite SPP. Even so, we are still generalizing
the classic dual extrapolation algorithm to CO, and thus term the algorithm Deterministic FeDualEx

or Composite Dual Extrapolation. Following a similar analysis, we are able to get the O(
1
T ) rate as

in previous work for CO (He et al., 2015) as well as the smooth dual extrapolation (Nesterov, 2007).
The proof for Theorem 4 is in Appendix G.2, which is a much simpler one based on the recently
proposed Relative Lipschitzness (Cohen et al., 2021).
Theorem 4. Under the basic convexity assumption and �-Lipschitzness of g, 8z 2 Z and ⌘ 

1
� ,

composite dual extrapolation satisfies Gap(
1
T

PT�1
t=0 zt+1/2) 

�B
T .

6 EXPERIMENTS

To complement our largely theoretical results, we verify in this section the effectiveness of FeDualEx
by numerical evaluation. Additional experiments and detailed settings are deferred to Appendix A.

Composite Bilinear SPP. We first test FeDualEx on composite bilinear problems with synthetic data.
The problems considered are demonstrated in Figure 2 and 3, in which m = 600, n = 300, p = 20,
� = 0.1, D = 0.05. The corresponding composite terms are `1 regularization with `1 ball constraint
and nuclear regularization with spectral constraint. The purpose of `1 regularization is to encourage
sparsity and nuclear regularization to encourage a solution with low rank.

We compare FeDualEx against FedDualAvg, FedMiD (Yuan et al., 2021), and FedMiP proposed
in Algorithm 2 in Appendix H. We note that methods like Extra Step Local SGD (Beznosikov
et al., 2020) and SCAFFOLD-S (Karimireddy et al., 2020) are not suited to problems with non-
smooth terms, but we include one of them for completeness, given that their rates are similar. For
such a comparison, one can only compute the sub-gradient instead of the gradient (which does not
everywhere exist). Projection needs to be applied as well to account for the constraints.

(a) One Local Update (K = 1) (b) Ten Local Updates (K = 10)

Figure 4: Duality gap and sparsity of the solution for `1 regularized SPP with `1 constraint.

(a) K = 1

(b) K = 10

Figure 5: Duality gap and rank of the solution to the nuclear norm regularized SPP.
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- L1Regularization for sparsity

• None of existing distributed saddle point optimization algorithms can solve
composite objectives or objectives with constraints

- Indicator function for constraints

dual extrapolation as well as techniques for composite convex optimization. We close this section with the
basic mechanism of federated learning. To begin with, we lay out the notations.

Notations. We use [n] to represent the set {1, 2, ..., n}. We use k · k to denote an arbitrary norm, k · k⇤ to
denote the dual norm, and k · k2 to denote the Euclidean norm. We use r for gradients, @ for subgradients,
and h·, ·i for inner products. Related to the algorithm, we use English letters (e.g., z, x, y) to denote primal
variables, Greek letters (e.g., !, &, µ, ⌫) to denote dual variables. We use R for communication rounds, K
for local updates, B for diameter bound, G for gradient bound, � for smoothness constant, � for standard
deviation, ⇠ for random samples. We use h⇤ to denote the convex conjugate of a function h.

3.1 Composite Saddle Point Optimization

Due to practical interest and lack of e↵ective methods in FL, we study composite saddle point optimization.
Its objective is formally given in the following definition.

Definition 1 (Composite SPP). The objective of composite saddle point optimization is defined as

min
x2X

max
y2Y

�(x, y) = f(x, y) +  1(x)�  2(y) (1)

where f(x, y) = 1
M

PM
m=1 fm(x, y) and  1(x),  2(y) are possibly non-smooth.

It is typically evaluated by the duality gap: Gap(x̂, ŷ) = maxy2Y �(x̂, y)�minx2X �(x, ŷ).

3.2 Mirror Prox and Dual Extrapolation

xt = Prox h
x̄(µt)

xt+1/2 = Prox h
xt
(⌘g(xt))

µt+1 = µt + ⌘g(xt+1/2)

Figure 1: Dual Extrapolation.

Mirror prox (Nemirovski, 2004) and dual extrapolation (Nes-
terov, 2007) are classic methods for convex-concave SPP. Both
are proximal algorithms based on the proximal operator defined
as

Prox h
x0(·) = argmin

x
{h·, xi+ V h

x0(x)},

in which V h
x0(x) is the Bregman divergence generated by some

closed, strictly convex, and di↵erentiable function h, and is defined as follows:

V h
x0(x) = h(x)� h(x0)� hrh(x0), x� x0

i.

Both algorithms conduct two evaluations of the proximal operator, while dual extrapolation carries out
updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with the proximal operator
as in (Cohen et al., 2021), with details in Appendix C.1.

3.3 Generalized Bregman Divergence

Recent advances in composite convex optimization (Yuan et al., 2021) have utilized the Generalized Bregman
Divergence (Flammarion and Bach, 2017) for analyzing composite objectives. It incorporates the composite
term into the distance-generating function of the vanilla Bregman divergence, and measures the distance
in terms of one variable and the dual image of the other, with the key insight being the conjugate of a
non-smooth generalized distance-generating function is di↵erentiable.

Definition 2 (Generalized Bregman Divergence (Flammarion and Bach, 2017)). Generalized Bregman di-

vergence is defined to be Ṽ ht
µ0 (x) = ht(x)�ht(rh⇤

t (µ
0))�hµ0, x�rh⇤

t (µ
0)i, where ht = h+t⌘ is a generalized

distance-generating function that is closed and strictly convex, t is the current number of iterations, ⌘ is the

step size, h⇤
t is the convex conjugate of ht, and µ0

is the dual image of x0
, i.e., µ0

2 @ht(x0) and x0 = rh⇤
t (µ

0).

Generalized Bregman divergence is suitable not only for non-smooth regularization but also for any convex

constraints C, taking  (x) =

(
0 if x 2 C

+1 otherwise
.
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Composite Saddle Point Optimization. We study composite saddle point optimization. Its
objective is formally given in the following definition.
Definition 1 (Composite SPP). The objective of composite saddle point optimization is defined as

min
x2X

max
y2Y

�(x, y) = f(x, y) +  1(x)�  2(y) (1)

where f(x, y) = 1
M

PM
m=1 fm(x, y) and  1(x),  2(y) are possibly non-smooth.

It is typically evaluated by the duality gap: Gap(x̂, ŷ) = maxy2Y �(x̂, y)�minx2X �(x, ŷ).
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x̄(µt)

xt+1/2 = Prox
h
xt
(⌘g(xt))

µt+1 = µt + ⌘g(xt+1/2)

Figure 1: Dual Extrapolation.

Mirror Prox and Dual Extrapolation. Mirror prox (Ne-
mirovski, 2004) and dual extrapolation (Nesterov, 2007) are
classic methods for convex-concave SPP. Both are proxi-
mal algorithms based on the proximal operator defined as
Prox

h
x0(·) = argminx{h·, xi + V h

x0(x)}, in which V h
x0(x) =

h(x)� h(x0
)� hrh(x0

), x� x0
i is the Bregman divergence

generated by some closed, strongly convex, and differentiable
function h. Both algorithms conduct two evaluations of the proximal operator, while dual extrapola-
tion carries out updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with
the proximal operator as in (Cohen et al., 2021), with details in Appendix C.1.

Generalized Bregman Divergence. Recent advances in composite convex optimization (Yuan
et al., 2021) have utilized the Generalized Bregman Divergence (Flammarion & Bach, 2017) for
analyzing composite objectives. It incorporates the composite term into the distance-generating
function of the vanilla Bregman divergence, and measures the distance in terms of one variable and
the dual image of the other, with the key insight being the conjugate of a non-smooth generalized
distance-generating function is differentiable.
Definition 2 (Generalized Bregman Divergence (Flammarion & Bach, 2017)). Generalized Bregman

divergence is defined to be Ṽ ht
µ0 (x) = ht(x)�ht(rh⇤

t (µ
0
))�hµ0, x�rh⇤

t (µ
0
)i, where ht = h+t⌘ 

is a generalized distance-generating function that is closed and strongly convex, t is the current

number of iterations, ⌘ is the step size, h⇤
t is the convex conjugate of ht, and µ0

is the dual image of

x0
, i.e., µ0

2 @ht(x0
) and x0

= rh⇤
t (µ

0
).

Generalized Bregman divergence is suitable not only for non-smooth regularization but also for any
convex constraints C, taking  (x) = 0 if x 2 C and +1 otherwise.

4 FEDERATED DUAL EXTRAPOLATION (FEDUALEX)

To tackle composite SPP in the DO paradigm, we acknowledge the challenges from several aspects.
Specifically, the generality afforded by composite and/or saddle point problems results in a need for
more sophisticated techniques that work with this additional structure. These concerns are further
complicated by the challenges that arise for DO, where communication and aggregation need to be
carefully handled under the distributed mechanism. In particular, Yuan et al. (2021) identified the “the
curse of primal averaging” in composite federated optimization and advocated for dual aggregation.
Dealing with these challenges altogether is rather non-trivial, as the techniques that are naturally
suited for one would fail for another. In this regard, we first present FeDualEx (Algorithm 1) and
several relevant novel definitions proposed for its adaptation to composite SPP. Then we analyze the
convergence rate in the homogeneous setting.

4.1 THE FEDUALEX ALGORITHM

FeDualEx builds its core on the classic dual extrapolation, an extra-step algorithm geared for saddle
point optimization. Its effectiveness has been widely verified in vanilla smooth convex-concave
SPP. Furthermore, its updating sequence lies in the dual space which would naturally inherit the
advantage of dual aggregation in composite federated optimization. The challenge remains for
composite optimization, as relevant work is limited, and the existing composite extension for the
extra-step method (He et al., 2015) is quite technically involved. Given that the smooth analysis
of dual extrapolation is already non-trivial (Nesterov, 2007), no attempts were previously made for
generalizing dual extrapolation to the composite optimization realm.
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function h. Both algorithms conduct two evaluations of the proximal operator, while dual extrapola-
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the proximal operator as in (Cohen et al., 2021), with details in Appendix C.1.

Generalized Bregman Divergence. Recent advances in composite convex optimization (Yuan
et al., 2021) have utilized the Generalized Bregman Divergence (Flammarion & Bach, 2017) for
analyzing composite objectives. It incorporates the composite term into the distance-generating
function of the vanilla Bregman divergence, and measures the distance in terms of one variable and
the dual image of the other, with the key insight being the conjugate of a non-smooth generalized
distance-generating function is differentiable.
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Generalized Bregman divergence is suitable not only for non-smooth regularization but also for any
convex constraints C, taking  (x) = 0 if x 2 C and +1 otherwise.
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Deterministic Composite Saddle Point Optimization Further removing the noise in gradient,
FeDualEx reduces to a deterministic algorithm for composite SPP. Even so, we are still generalizing
the classic dual extrapolation algorithm to CO, and thus term the algorithm Deterministic FeDualEx

or Composite Dual Extrapolation. Following a similar analysis, we are able to get the O(
1
T ) rate as

in previous work for CO (He et al., 2015) as well as the smooth dual extrapolation (Nesterov, 2007).
The proof for Theorem 4 is in Appendix G.2, which is a much simpler one based on the recently
proposed Relative Lipschitzness (Cohen et al., 2021).
Theorem 4. Under the basic convexity assumption and �-Lipschitzness of g, 8z 2 Z and ⌘ 

1
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composite dual extrapolation satisfies Gap(
1
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PT�1
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6 EXPERIMENTS

To complement our largely theoretical results, we verify in this section the effectiveness of FeDualEx
by numerical evaluation. Additional experiments and detailed settings are deferred to Appendix A.

Composite Bilinear SPP. We first test FeDualEx on composite bilinear problems with synthetic data.
The problems considered are demonstrated in Figure 2 and 3, in which m = 600, n = 300, p = 20,
� = 0.1, D = 0.05. The corresponding composite terms are `1 regularization with `1 ball constraint
and nuclear regularization with spectral constraint. The purpose of `1 regularization is to encourage
sparsity and nuclear regularization to encourage a solution with low rank.

We compare FeDualEx against FedDualAvg, FedMiD (Yuan et al., 2021), and FedMiP proposed
in Algorithm 2 in Appendix H. We note that methods like Extra Step Local SGD (Beznosikov
et al., 2020) and SCAFFOLD-S (Karimireddy et al., 2020) are not suited to problems with non-
smooth terms, but we include one of them for completeness, given that their rates are similar. For
such a comparison, one can only compute the sub-gradient instead of the gradient (which does not
everywhere exist). Projection needs to be applied as well to account for the constraints.

(a) One Local Update (K = 1) (b) Ten Local Updates (K = 10)

Figure 4: Duality gap and sparsity of the solution for `1 regularized SPP with `1 constraint.
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Figure 5: Duality gap and rank of the solution to the nuclear norm regularized SPP.
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function h. Both algorithms conduct two evaluations of the proximal operator, while dual extrapola-
tion carries out updates in the dual space. Figure 1 gives a brief illustration of dual extrapolation with
the proximal operator as in (Cohen et al., 2021), with details in Appendix C.1.

Generalized Bregman Divergence. Recent advances in composite convex optimization (Yuan
et al., 2021) have utilized the Generalized Bregman Divergence (Flammarion & Bach, 2017) for
analyzing composite objectives. It incorporates the composite term into the distance-generating
function of the vanilla Bregman divergence, and measures the distance in terms of one variable and
the dual image of the other, with the key insight being the conjugate of a non-smooth generalized
distance-generating function is differentiable.
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generalizing dual extrapolation to the composite optimization realm.
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M

PM
m=1 fm(x, y) and  1(x),  2(y) are possibly non-smooth.
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Figure 1: Dual Extrapolation.
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0
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4 FEDERATED DUAL EXTRAPOLATION (FEDUALEX)
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composite optimization, as relevant work is limited, and the existing composite extension for the
extra-step method (He et al., 2015) is quite technically involved. Given that the smooth analysis
of dual extrapolation is already non-trivial (Nesterov, 2007), no attempts were previously made for
generalizing dual extrapolation to the composite optimization realm.
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Local Composite Saddle Point OptimizationMotivation

Federated Composite Optimization [Yuan et al., 2021]

• Curse of Primal Averaging in Federated Composite Optimization
 - Specific regularization-imposed structure on the clients no 

longer holds after direct averaging on the server

- E.g. each client obtains a sparse solution, yet averaging the 
solutions across clients yields a dense solution

- Propose Federated Dual Averaging that aggregates the dual
solutions before projection to the primal space

Federated Composite Optimization
Overview
New Setting: Federated Composite Optimization (FCO)
o FL with (possibly non-smooth) regularizers or constraints
o Arises naturally in FL applications that involve sparsity, low-rank, or constraints.
o Standard FL algorithms (e.g., FedAvg) are for smooth unconstrained settings.

Straightforward Extension of FedAvg suffers from “curse of primal averaging”

Our proposal: Federated Dual Averaging
o Novel server dual averaging procedure
o Theoretical and empirical advantages

FedMiD: a straightforward extension

Problem definition and Examples

Experiments

Main References
A.S. Nemirovski and D.B. Yudin “Problem complexity and method efficiency in 
optimization.” 1983

Yurii Nesterov “Primal-dual subgradient methods for convex problems” In: 
Mathematical Programming, 120(1), 2009

Nicolas Flammarion and Francis Bach “Stochastic composite least-squares 
regression with convergence rate O(1/n)” In: COLT 2017.
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Blake Woodworth et al “Minibatch vs Local SGD for Heterogeneous
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o is the loss function of the m-th client
o 𝜓 is a (possibly non-smooth, non-finite) convex regularizer

o Federated Lasso for sparsity representations

o Federated matrix completion via nuclear norm

o FL with constraints: let 𝜓 be convex indicator

Background of (non-federated) composite optimization

Composite 101: ProxGD is the standard algorithm for solving non-federated CO:

Proximal additive

Smoothness estimationFirst-order Taylor expansion of 𝐹

reduces to PGD
if ℎ 𝑤 = 1

2
| 𝑤 |2

Composite 201: Mirror descent generalizes ProxGD to general Bregman divergence

Primal-Dual interpretation of Mirror Descent

○ 𝑧𝑡 = ∇ℎ(𝑤𝑡) Forward mirror (Primal -> Dual)
○ 𝑦𝑡+1 = 𝑧𝑡 − 𝜂 ∙ ∇𝐹 𝑤𝑡 Gradient step (in dual space)
○ 𝑤𝑡+1 = ∇(ℎ + 𝜂𝜓)∗ 𝑦𝑡+1 Backward mirror (Dual -> Primal)

While each client can locate a sparse 
solution, simply averaging yields a 
dense solution on the server.

Issue of FedMiD: curse of primal averaging

Cause: averaging and proximal operator do not commute.

Background: Dual averaging
Composite 202: Dual Averaging (a.k.a. Lazy Mirror Descent)

Backward mirror (Dual -> Primal) – retrieve primal

Gradient step (in dual space)

Mirror Descent

o Forward and backward mirror

o Persistent primal states

💤 Dual Averaging

o Backward mirror only

o Persistent dual states

Our main proposal: FedDualAvg

Compute primal point

Client dual update

Server dual update
(Optional) primal output

Average client dual deltas

Locally: each client runs dual averaging, 
tracking a pair of primal and dual states.

Communication: dual states are 
aggregated across clients.

(a) & (b): standard
regularity assumptions
for composite setup

(c): smoothness of f

(e): full participation (for
simplicity of exposition)

(d): additive bounded
variance

Main theoretical results

Theorem 4.3. Assuming A1, and in addition assume

and 𝐹 is quadratic, then FedDualAvg can output ෝ𝑤 such that

moreover for appropriate 𝜂𝑐

matches best known bound on
smooth unconstrained FᴇᴅAᴠɢ
c.f. [Woodworth et al., 2020]

faster convergence
(usefulness of client step)

Overhead for infrequent
communication

𝐵 ≔ 𝐷ℎ 𝑤⋆,𝑤0
L: smoothness
σ: variance bound
M: # of clients
K: # of local steps
R: # of rounds

[McMahan et al., 2017]

[Nesterov, 2009]

[Nemirovski and Yudin, 1983, Flammarion and Bach, 2017]

• Federated Dual Averaging: Inferior Convergence for Saddle Point Optimization
 - Single-step Methods (Mirror Desenct / Dual Averaging [Bubeck et al., 2015]):

 - Extra-step Methods (Mirror Prox [Nemirovski, 2004] / Dual Extrapolation[Nesterov, 2007]):
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ABSTRACT

Distributed optimization (DO) approaches for saddle point problems (SPP) have
recently gained in popularity due to the critical role they play in machine learning
(ML). Existing works mostly target smooth unconstrained objectives in Euclidean
space, whereas ML problems often involve constraints or non-smooth regular-
ization, which results in a need for composite optimization. Moreover, although
non-smooth regularization often serves to induce structure (e.g., sparsity), standard
aggregation schemes in distributed optimization break this structure. Addressing
these issues, we propose Federated Dual Extrapolation (FeDualEx), an extra-step
primal-dual algorithm with local updates, which is the first of its kind to encompass
both saddle point optimization and composite objectives under the distributed
paradigm. Using a generalized notion of Bregman divergence, we analyze its con-
vergence and communication complexity in the homogeneous setting. Furthermore,
the empirical evaluation demonstrates the effectiveness of FeDualEx for inducing
structure in these challenging settings.

1 INTRODUCTION

A notable fraction of machine learning (ML) problems belong to saddle point problems (SPP),
including adversarial robustness (Madry et al., 2018; Chen & Hsieh, 2023), generative adversarial
networks (GAN) (Goodfellow et al., 2014), matrix games (Abernethy et al., 2018), multi-agent
reinforcement learning (Wai et al., 2018), among others. These applications call for effective
distributed saddle point optimization as their scale evolves beyond centralized learning. In typical
distributed optimization (DO) approaches, a central server coordinates collaborative learning among
clients through rounds of communication. In each round, clients learn a synchronized global model
locally without sharing their private data, then send the model to the server for aggregation, usually
through averaging (McMahan et al., 2017; Stich, 2019), to produce a new global model. The cost of
communication is known to dominate the optimization process (Konečnỳ et al., 2016).

Although preliminary progress has been made in distributed saddle point optimization (Beznosikov
et al., 2020; Hou et al., 2021), we would note that machine learning problems are commonly associated
with task-specific constraints or non-smooth regularization, which results in a need for composite
optimization (CO). Moreover, a common purpose for non-smooth regularization is to induce structure.
Typical ones include `1 norm for sparsity and nuclear norm for low-rankness, which show up in
examples spanning from classical LASSO (Tibshirani, 1996), sparse regression (Hastie et al., 2015)
to deep learning such as adversarial example generation (Moosavi-Dezfooli et al., 2016), sparse GAN
(Zhou et al., 2020), convexified learning (Sahiner et al., 2022; Bai et al., 2024) and others.

Meanwhile, Yuan et al. (2021) identified the “curse of primal averaging” in standard aggregation
schemes of DO, where the specific regularization-imposed structure on the client models may no
longer hold after direct averaging on the server. For instance, each client may be able to obtain
a sparse solution, yet averaging the solutions across clients yields a dense solution. To address
this issue for convex optimization, they adopted the dual averaging technique (Nesterov, 2009),
but this approach is not specifically designed for SPP. Even in the sequential deterministic setting,
dual averaging or mirror descent (Nemirovskij & Yudin, 1983) achieve only a O(1/

p
T ) rate for

SPP (Bubeck et al., 2015), whereas extra-step methods achieve a O(1/T ) rate (Nemirovski, 2004;
Nesterov, 2007). At the same time, existing distributed methods for SPP fail to cover these composite
scenarios and address associated challenges, as summarized in Table 1.
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Local Composite Saddle Point OptimizationOur Contribution

Federated Dual Extrapolation (FeDualEx)

• Present the first algorithm for saddle point
optimization with composite non-smooth 
regularization under a distributed paradigm,
and derive its convergence rate

• Showcase the structure-preserving (e.g., 
sparsity) advantage of FeDualEx achieved 
through dual-space averaging 

• Present deterministic and stochastic dual 
extrapolation for composite saddle point
optimization in the sequential setting

• Demonstrate experimentally the 
effectiveness of FeDualEx on various 
composite saddle point tasks
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Algorithm
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Federated Dual Extrapolation (FeDualEx)
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Local Composite Saddle Point OptimizationOther Settings

Distributed Composite Convex Optimization [Yuan et al., 2021]

Stochastic Composite Saddle Point Optimization [Mishchenko et al., 2020]

Deterministic Composite Saddle Point Optimization [He et al., 2015]
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min
x2X

max
y2Y

hAx� b,yi+ �kxk1 � �kyk1

A 2 Rn⇥m, X = {Rm
: kxk1  D},

b 2 Rn, Y = {Rn
: kyk1  D}.

Figure 2: The composite SPP with `1 regular-
ization for sparsity (Jiang & Mokhtari, 2022).

min
X2X

max
Y2Y

Tr
�
(AX�B)

>Y
�
+ �kXk⇤ � �kYk⇤

A 2 Rn⇥m, X = {Rm⇥p
: kXk2  D},

B 2 Rn⇥p, Y = {Rn⇥p
: kYk2  D}.

Figure 3: The composite SPP with nuclear norm low-
rank regularization.

Deterministic Composite Saddle Point Optimization Further removing the noise in gradient,
FeDualEx reduces to a deterministic algorithm for composite SPP. Even so, we are still generalizing
the classic dual extrapolation algorithm to CO, and thus term the algorithm Deterministic FeDualEx

or Composite Dual Extrapolation. Following a similar analysis, we are able to get the O(
1
T ) rate as

in previous work for CO (He et al., 2015) as well as the smooth dual extrapolation (Nesterov, 2007).
The proof for Theorem 4 is in Appendix G.2, which is a much simpler one based on the recently
proposed Relative Lipschitzness (Cohen et al., 2021).
Theorem 4. Under the basic convexity assumption and �-Lipschitzness of g, 8z 2 Z and ⌘ 

1
� ,

composite dual extrapolation satisfies Gap(
1
T

PT�1
t=0 zt+1/2) 

�B
T .

6 EXPERIMENTS

To complement our largely theoretical results, we verify in this section the effectiveness of FeDualEx
by numerical evaluation. Additional experiments and detailed settings are deferred to Appendix A.

Composite Bilinear SPP. We first test FeDualEx on composite bilinear problems with synthetic data.
The problems considered are demonstrated in Figure 2 and 3, in which m = 600, n = 300, p = 20,
� = 0.1, D = 0.05. The corresponding composite terms are `1 regularization with `1 ball constraint
and nuclear regularization with spectral constraint. The purpose of `1 regularization is to encourage
sparsity and nuclear regularization to encourage a solution with low rank.

We compare FeDualEx against FedDualAvg, FedMiD (Yuan et al., 2021), and FedMiP proposed
in Algorithm 2 in Appendix H. We note that methods like Extra Step Local SGD (Beznosikov
et al., 2020) and SCAFFOLD-S (Karimireddy et al., 2020) are not suited to problems with non-
smooth terms, but we include one of them for completeness, given that their rates are similar. For
such a comparison, one can only compute the sub-gradient instead of the gradient (which does not
everywhere exist). Projection needs to be applied as well to account for the constraints.

(a) One Local Update (K = 1) (b) Ten Local Updates (K = 10)

Figure 4: Duality gap and sparsity of the solution for `1 regularized SPP with `1 constraint.

(a) K = 1

(b) K = 10

Figure 5: Duality gap and rank of the solution to the nuclear norm regularized SPP.
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g⇤2(·) = Dk · k⇤. And the infimum is achieved when

�i(P) =

⇢
�i

�
1
� (Ax�B)

�
if |�i

�
1
� (Ax�B)

�
|  1

sgn
�
�i

�
1
� (Ax�B)

��
otherwise

,

�j(Q) =

⇢
�j

�
1
� (A

>y)
�

if |�j

�
1
� (A

>y)
�
|  1

sgn
�
�j

�
1
� (A

>y)
��

otherwise
,

which yields the closed-form duality gap.

Experiment Settings. We generate a fixed pair of A and B. Each entry of A and half of the columns
in B follows the uniform distribution U[�1,1] independently. Each entry of the variables X and Y
is initialized independently from the distribution U[�1,1]. We take m = 600, n = 300, p = 20,
� = 0.1, D = 0.05. For DO, we simulate M = 100 clients. For the gradient query of each client
in each local update, we inject a Gaussian noise from N (0,�2

). All M = 100 clients participate
in each round; noise on each client is i.i.d. with � = 0.1. We only tune the global step size ⌘s and
the local step size ⌘c. For all experiments, the parameters are searched from the combination of
⌘s 2 {1, 3e�1, 1e�1, 3e�2, 1e�2} and ⌘c 2 {10, 3, 1, 3e�1, 1e�1, 3e�2, 1e�2, 3e�3, 1e�3}.
We run each setting for 10 different random seeds and plot the mean and the standard deviation.

We evaluate the convergence in terms of the duality gap and also demonstrate the rank of the solution,
for both X and Y. For the feasibility of low-rankness, we generate B to be of rank p

2 , i.e. half of
the columns of B is linearly dependent on the other half. With p = 20, the optimal rank for the
solution would most likely be 10. The evaluation is conducted for two different settings: (a) K = 1

local update for R = 100 rounds; (b) K = 10 local updates for R = 20 rounds. The results are
demonstrated in Figure 5 correspondingly.

Discussions. From Figure 5, we can see that in the setting for low-rankness regularization, dual
methods tend to perform better both in minimizing the duality gap and in encouraging a low-rank
solution. In particular, FeDualEx, as a method geared for saddle point optimization, demonstrates
better convergence in the duality gap than FedDualAvg. In the meantime, the solution given by
FeDualEx quickly reaches the optimal rank of 10. This further reveals the potential of FeDualEx in
coping with a variety of regularization and constraints.

A.3 UNIVERSAL ADVERSARIAL TRAINING OF LOGISTIC REGRESSION

We provide the problem formulation and detailed experiment setting for the universal adversarial
training of logistic regression demonstrated in the main text.

Problem Formulation. As introduced, we impose an l1 regularization on the attack to encourage
sparsity in addition to the ball constraint. The problem can be formulated as the following SPP:

min
w2Rd

max
k�k1D

1

n

nX

i=1

`(w>
(xi + �), yi) + �k�k1

in which ` is the cross-entropy loss for multiclass logistic regression; w 2 Rd is the parameter;
xi 2 Rd is the data and yi is the label; � 2 Rd is the attack.

Experiment Settings. The training data for MNIST is evenly distributed across M = 100 clients,
each possessing 600. The client makes K = 5 local updates and communicates for R = 20

rounds. For the CIFAR-10 experiments, each of the 100 clients holds 500 of the training data. The
client makes K = 5 local updates and communicates for R = 40 rounds. D = 0.05 for data
normalized between 0 and � = 0.1. Validation is done on the whole validation dataset on the
server with unattacked data. As before, the hyper-parameters are searched from the combination of
⌘s 2 {1, 3e�1, 1e�1, 3e�2, 1e�2} and ⌘c 2 {10, 3, 1, 3e�1, 1e�1, 3e�2, 1e�2, 3e�3, 1e�3}.
We run each setting for 10 different random seeds and plot the mean and the standard deviation in
Figure 6.

Attack Visualization. The attack for MNIST has only one channel and is directly visualized with
the color map from blue to red rescaled between the range of the attack, with blue being negative,
red being positive, and purple being zero. The attack for CIFAR-10 contains 3 channels and can be
directly visualized with RGB mode rescaled between 0 and 255. For the attack to be visible, we
divide the value by its maximum then times the result by 4.
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which yields the closed-form duality gap.
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A.3 UNIVERSAL ADVERSARIAL TRAINING OF LOGISTIC REGRESSION
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⌘s 2 {1, 3e�1, 1e�1, 3e�2, 1e�2} and ⌘c 2 {10, 3, 1, 3e�1, 1e�1, 3e�2, 1e�2, 3e�3, 1e�3}.
We run each setting for 10 different random seeds and plot the mean and the standard deviation in
Figure 6.

Attack Visualization. The attack for MNIST has only one channel and is directly visualized with
the color map from blue to red rescaled between the range of the attack, with blue being negative,
red being positive, and purple being zero. The attack for CIFAR-10 contains 3 channels and can be
directly visualized with RGB mode rescaled between 0 and 255. For the attack to be visible, we
divide the value by its maximum then times the result by 4.
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