# SF(DA)<sup>2</sup>: Source-free Domain Adaptation Through the Lens of Data Augmentation

Uiwon Hwang<sup>1</sup>\*, Jonghyun Lee<sup>2</sup>, Juhyeon Shin<sup>2</sup>, Sungroh Yoon<sup>2</sup>

<sup>1</sup> Yonsei University <sup>2</sup> Seoul National University







\*speaker

### **Domain Adaptation**

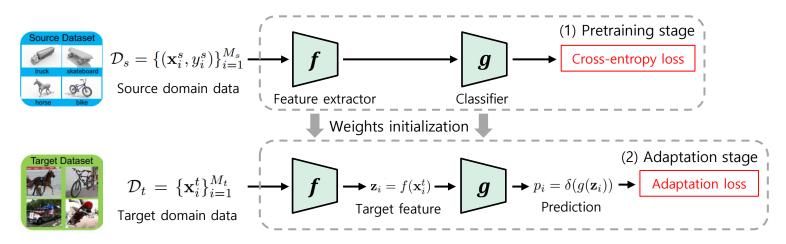
#### • **Domain adaptation** (DA)

- **Domain shift** or covariate shift problem deteriorates the performance of the model
- Adapting a model trained on labeled source domain data to <u>unlabeled target</u> <u>domain</u> data

e.g. Using a self-driving model trained under sunny conditions for application during **rainy days** 

#### • **Source-free domain adaptation** (SFDA)

- Source domain data can be inaccessible or difficult to obtain
  - Cost, privacy concern, ...
- SFDA uses only a **model pretrained** on the source domain data



### **Data Augmentation**

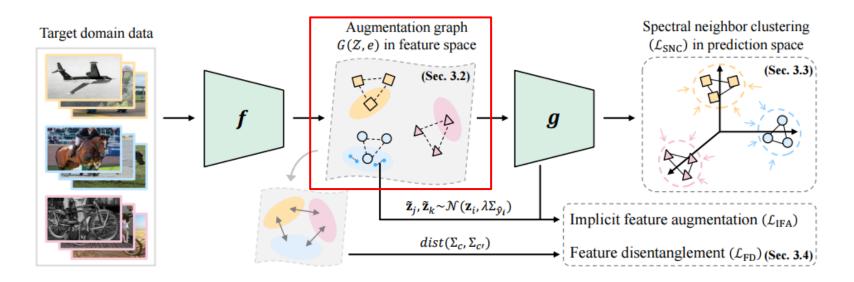
- Data augmentation (another DA)
  - Increasing the diversity of the training dataset by applying transformations
  - Improving the generalization performance of the model

- Reliance on <u>domain knowledge</u>
  - Not using <u>class-preserving</u> transformations can lead to a decrease in model performance
  - Predefined transformations require strong domain expertise

#### Augmentation graph on feature space

- Clustering assumption of source model
  - Target domain data that share the <u>same semantic information</u> are mapped to their <u>neighbors</u> in the feature space of the pretrained model
- Augmentation assumption of target domain data
  - Target domain data <u>sharing class semantic information</u> may have highly nonlinear functions to <u>transform each other</u>
- Population augmentation graph  $G(\mathcal{Z}, e)$ , where  $\begin{pmatrix} \mathcal{Z} = \{ \mathbf{z} = f(\mathbf{x}^t) | \mathbf{x}^t \sim P(\mathcal{X}^t) \} \\ e_{ij} = e(\mathbf{z}_i, \mathbf{z}_j) = Pr(\mathbf{z}_j \in N_i) \end{pmatrix}$

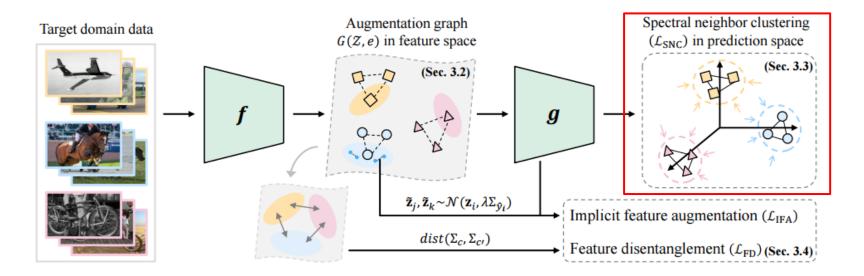
set of neighbors of 
$$\mathbf{z}_i$$



#### Finding partition on prediction space

- We build an instance of population augmentation graph  $\hat{G}$  using target domain data
  - We consider *K*-nearest neighbors of  $\mathbf{z}_i$ , denoted by  $N_i^K$ , in the feature memory bank  $\mathcal{F}$
- Then, we employ spectral clustering on the graph
- **Spectral neighborhood clustering (SNC)** loss on  $\hat{G}$ 
  - Identify partitions in the augmentation graph

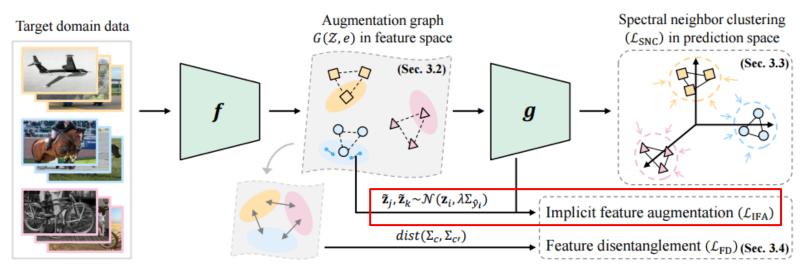
$$\mathcal{L}_{\text{SNC}}(p_i) = -\frac{2}{K} \sum_{j \in N_i^K} p_i^T p_j + \sum_{k \in B} \left( p_i^T p_k \right)^2$$



- Implicit feature augmentation (IFA)
  - We aim to Simulate the effect of an <u>unlimited number of augmented features</u>
    - With minimal computational and memory overhead
  - First, we augment target features using estim  $\tilde{\mathbf{z}}_j, \tilde{\mathbf{z}}_k, \dots \sim \mathcal{N}(\mathbf{z}_i, \lambda \Sigma_{\hat{y}_i})$  covariance matrices based on pseudo-labels:
  - Then, we derive the upper bound for the expected (logarithm of) SNC loss

$$\mathcal{L}_{\text{EFA}}^{\infty}(\mathbf{z}_{i}; f, g) = \mathbb{E}_{\tilde{\mathbf{z}}_{j} \sim \mathcal{N}(\mathbf{z}_{i}, \lambda \Sigma_{i})} \left[ \mathbb{E}_{\tilde{\mathbf{z}}_{k} \sim \mathcal{N}(\mathbf{z}_{i}, \lambda \Sigma_{i})} \left[ -\log \tilde{p}_{j}^{T} \tilde{p}_{k} \right] \right]$$

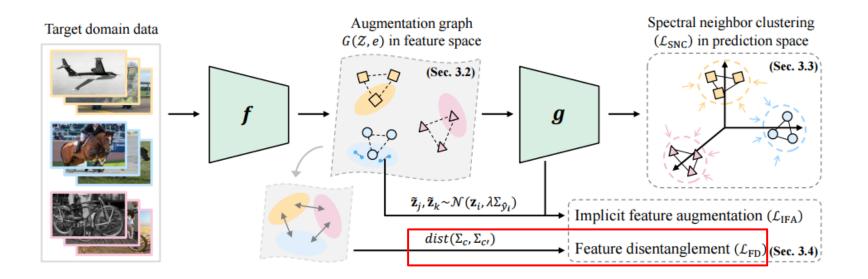
$$\leq -2 \sum_{c=1}^{C} \log \frac{\exp(g(\mathbf{z}_{i})_{c})}{\sum_{c'=1}^{C} \exp\left(g(\mathbf{z}_{i})_{c'} + \frac{\lambda}{2}(w_{c'} - w_{c})^{T} \Sigma_{\hat{y}_{i}}(w_{c'} - w_{c})\right)} = \mathcal{L}_{\text{IFA}}(\mathbf{z}_{i}, \Sigma_{\hat{y}_{i}}, g)$$



- Feature disentanglement (FD)
  - Encourage each direction in the feature space to represent different semantics
  - Maximize the <u>cosine distance</u> between covariance matrices corresponding to <u>similar classes</u>

$$\mathcal{L}_{\rm FD} = -\frac{1}{2} \sum_{i,j} a_{ij} \left( 1 - \frac{\operatorname{tr}\{\Sigma_i \ \Sigma_j\}}{\|\Sigma_i\|_F \|\Sigma_j\|_F} \right)$$

$$a_{ij} = \bar{p}_i^T \bar{p}_j$$
, where  $\bar{p}_c = \frac{1}{|\{i:\hat{y}_i=c\}|} \sum_{i \in \{i:\hat{y}_i=c\}} p_i$ 



• Final objective

$$\min_{f,g} \mathcal{L}_{\rm SNC} + \alpha_1 \mathcal{L}_{\rm IFA} + \alpha_2 \mathcal{L}_{\rm FD}$$

• Pseudo code

Algorithm 1 Adaptation procedure of SF(DA)<sup>2</sup>

**Require:** f and g (trained on  $\mathcal{D}_s$ ),  $\mathcal{D}_t = {\mathbf{x}_i^t}_{i=1}^{M_t}$ 

- 1: while training loss is not converged do
- 2: if epoch start then
- 3: Update  $a_{ij}$  for FD loss
- 4: **end if**
- 5: Sample batch B from  $\mathcal{D}_t$  and update  $\mathcal{F}, \mathcal{S}$
- 6: Retrieve neighbors  $\mathcal{N}_i^K$  for each  $\mathbf{z}_i$  in B
- 7: Update f and g using SGD

8: 
$$\nabla_{f,g} \mathcal{L}_{SNC} + \alpha_1 \mathcal{L}_{IFA} + \alpha_2 \mathcal{L}_{FD}$$

9: end while

#### • Evaluation results

| Method          | SF | plane | bicycle | bus  | car  | horse | knife | mcycl | person | plant | sktbrd | train | truck | Per-class   |
|-----------------|----|-------|---------|------|------|-------|-------|-------|--------|-------|--------|-------|-------|-------------|
| BSP [4]         | X  | 92.4  | 61.0    | 81.0 | 57.5 | 89.0  | 80.6  | 90.1  | 77.0   | 84.2  | 77.9   | 82.1  | 38.4  | 75.9        |
| SAFN [34]       | ×  | 93.6  | 61.3    | 84.1 | 70.6 | 94.1  | 79.0  | 91.8  | 79.6   | 89.9  | 55.6   | 89.0  | 24.4  | 76.1        |
| MCC [11]        | X  | 88.7  | 80.3    | 80.5 | 71.5 | 90.1  | 93.2  | 85.0  | 71.6   | 89.4  | 73.8   | 85.0  | 36.9  | 78.8        |
| FixBi [19]      | ×  | 96.1  | 87.8    | 90.5 | 90.3 | 96.8  | 95.3  | 92.8  | 88.7   | 97.2  | 94.2   | 90.9  | 25.7  | 87.2        |
| Source only [9] | -  | 60.9  | 21.6    | 50.9 | 67.6 | 65.8  | 6.3   | 82.2  | 23.2   | 57.3  | 30.6   | 84.6  | 8.0   | 46.6        |
| 3C-GAN [15]     | 1  | 94.8  | 73.4    | 68.8 | 74.8 | 93.1  | 95.4  | 88.6  | 84.7   | 89.1  | 84.7   | 83.5  | 48.1  | 81.6        |
| SHOT [17]       | 1  | 94.6  | 87.5    | 80.4 | 59.5 | 92.9  | 95.1  | 83.1  | 80.2   | 90.9  | 89.2   | 85.8  | 56.9  | 83.0        |
| NRC [35]        | 1  | 96.1  | 90.8    | 83.9 | 61.5 | 95.7  | 95.7  | 84.4  | 80.7   | 94.0  | 91.9   | 89.0  | 59.5  | 85.3        |
| CoWA-JMDS [14]  | 1  | 96.2  | 90.6    | 84.2 | 75.5 | 96.5  | 97.1  | 88.2  | 85.6   | 94.9  | 93.0   | 89.2  | 53.5  | 87.0        |
| AaD [37]        | 1  | 96.8  | 89.3    | 83.8 | 82.8 | 96.5  | 95.2  | 90.0  | 81.0   | 95.7  | 92.9   | 88.9  | 54.6  | <u>87.3</u> |
| DaC [38]        | 1  | 96.6  | 86.8    | 86.4 | 78.4 | 96.4  | 96.2  | 93.6  | 83.8   | 96.8  | 95.1   | 89.6  | 50.0  | <u>87.3</u> |
| $SF(DA)^2$      | 1  | 96.8  | 89.3    | 82.9 | 81.4 | 96.8  | 95.7  | 90.4  | 81.3   | 95.5  | 93.7   | 88.5  | 64.7  | 88.1        |

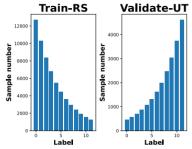
Table 1: Accuracy (%) on the VisDA dataset (ResNet-101).

Table 2: Accuracy (%) on 7 domain shifts of the DomainNet-126 dataset (ResNet-50).

| Method                                                                      | SF   S→F                                                                       | • C→S | $P\!\!\rightarrow\!\!C$              | $P \rightarrow R$                    | $R {\rightarrow} S$                  | $R {\rightarrow} C$                  | $R \rightarrow P$                    | Avg.                                               |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------|
| MCC [11]                                                                    | <b>X</b>   47.3                                                                | 34.9  | 41.9                                 | 72.4                                 | 35.3                                 | 44.8                                 | 65.7                                 | 48.9                                               |
| Source only 9<br>TENT 32<br>SHOT 17<br>AdaContrast 3<br>SF(DA) <sup>2</sup> | -     50.1       ✓     52.4       ✓     66.1       ✓     65.9       ✓     67.7 | 60.1  | 53.0<br>57.9<br>66.9<br>68.6<br>67.8 | 75.0<br>67.0<br>80.8<br>80.5<br>83.5 | 46.3<br>54.0<br>59.9<br>61.5<br>60.2 | 55.5<br>58.5<br>67.7<br>70.2<br>68.8 | 62.7<br>65.7<br>68.4<br>69.8<br>70.5 | 55.6<br>57.7<br>67.1<br><u>67.8</u><br><b>68.3</b> |

#### Experiments

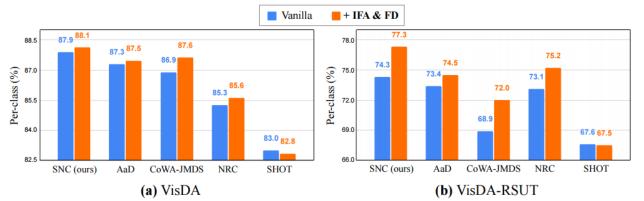
- Imbalanced dataset
  - VisDA-RSUT
    - Labels of source domain and target domain have opposite long-tail distributions



#### Table 4: Accuracy (%) on the VisDA-RSUT dataset (ResNet-101).

| Method          | SF       | plane | bicycle | bus  | car  | horse | knife | mcycl | person | plant | sktbrd | train | truck | Per-class   |
|-----------------|----------|-------|---------|------|------|-------|-------|-------|--------|-------|--------|-------|-------|-------------|
| DANN [7]        | <b>X</b> | 71.7  | 35.7    | 58.5 | 21.0 | 80.9  | 73.0  | 45.7  | 23.7   | 12.2  | 4.3    | 1.5   | 0.9   | 35.8        |
| BSP [4]         | X        | 100.0 | 57.1    | 68.9 | 56.8 | 83.7  | 26.7  | 78.7  | 16.2   | 63.7  | 1.9    | 0.1   | 0.1   | 46.2        |
| MCD [26]        | ×        | 63.0  | 41.4    | 84.0 | 67.3 | 86.6  | 93.9  | 85.6  | 76.3   | 84.1  | 11.3   | 5.0   | 3.0   | 58.5        |
| Source only [9] | -        | 79.7  | 15.7    | 40.6 | 77.2 | 66.8  | 11.1  | 85.1  | 12.9   | 48.3  | 14.3   | 64.6  | 3.3   | 43.3        |
| SHOT [17]       | 1        | 86.2  | 48.1    | 77.0 | 62.8 | 92.0  | 66.2  | 90.7  | 61.3   | 76.9  | 73.5   | 67.2  | 9.1   | 67.6        |
| CoWA-JMDS [14]  | 1        | 63.8  | 32.9    | 69.5 | 59.9 | 93.2  | 95.4  | 92.3  | 69.4   | 85.1  | 68.4   | 64.9  | 32.3  | 68.9        |
| NRC [35]        | 1        | 86.2  | 47.6    | 66.7 | 68.1 | 94.7  | 76.6  | 93.7  | 63.6   | 87.3  | 89.0   | 83.6  | 20.5  | 73.1        |
| AaD [37]        | 1        | 73.9  | 33.3    | 56.6 | 71.4 | 90.1  | 97.0  | 91.9  | 70.8   | 88.1  | 87.2   | 81.2  | 39.4  | <u>73.4</u> |
| $SF(DA)^2$      | 1        | 79.0  | 43.3    | 73.6 | 74.7 | 92.8  | 98.3  | 93.4  | 79.1   | 90.1  | 87.5   | 81.1  | 34.2  | 77.3        |

• The proposed IFA loss significantly improves the performance of existing methodologies as well as SNC in imbalanced SFDA



### Thank you!

### • TL;DR

 a novel SFDA method that leverages intuitions derived from data augmentation

#### • Summary

- Provide a fresh perspective on SFDA by interpreting it through the lens of data augmentation
- Propose the <u>spectral neighborhood clustering (SNC)</u> loss and derive the <u>implicit feature augmentation (IFA)</u> using the augmentation graph in the feature space
- Outperform existing methods under SFDA settings, especially with imbalanced classes
- More details can be found in our paper and code!