Neuron-Enhanced AutoEncoder Matrix Completion and Collaborative Filtering: Theory and Practice

Jicong Fan^{1,2} Rui Chen^{1,2} Zhao Zhang³ Chris H.Q. Ding¹

¹The Chinese University of Hong Kong, Shenzhen, China ²Shenzhen Research Institute of Big Data, Shenzhen, China ³Hefei University of Technology, China

- Propose AEMC-NE for matrix completion and collaborative filtering.
- Provide generalization error bounds regarding different missing mechanisms.

• Element-wise nonlinearity widely exists in real data

- The observed variable *x* ∈ ℝ^d is given by *x_i* = *f*(*z_i*), *i* = 1,...,*d*, where *z* ∈ ℝ^d is the unobserved variable and *f* : ℝ → ℝ is a nonlinear function (usually unknown).
- Examples
 - In imaging science, the intensity of pixels are nonlinear responses of photoelectric element to the spectrum.
 - In chemical engineering, many sensors have nonlinear responses.
 - In biomedical engineering, the dose-responses are often nonlinear curves.
 - In recommendations systems, the ratings may be nonlinear responses to some latent values, according to the studies on response curves in psychology.

Proposed Model

AEMC-NE is composed of two different neural networks.

• g is an autoencoder to reconstruct the incomplete rating matrix \tilde{X}

$$g_{W}(\tilde{\boldsymbol{X}}) = \boldsymbol{W}_{L_{W}} \big(\sigma_{W} \big(\boldsymbol{W}_{L_{W}-1} \sigma_{W} (\cdots \sigma_{W} (\boldsymbol{W}_{1} \tilde{\boldsymbol{X}}) \cdots) \big) \big)$$

 h is an element-wise neural network to learn an activation function for the output of g

$$h_{\Theta}(z) = \Theta_{L_{\Theta}}(\sigma_{\Theta}(\Theta_{L_{\Theta}-1}\sigma_{\Theta}(\cdots \sigma_{\Theta}(\Theta_{1}z)\cdots)))$$

 $\underset{W,\Theta}{\text{minimize}} \left\| \boldsymbol{S} \odot \left(\tilde{\boldsymbol{X}} - h_{\Theta} \big(\boldsymbol{g}_{W} (\tilde{\boldsymbol{X}}) \big) \right) \right\|_{F}^{2} + \lambda_{W} \sum_{l=1}^{L_{W}} \| \boldsymbol{W}_{l} \|_{F}^{2} + \lambda_{\Theta} \sum_{l=1}^{L_{\Theta}} \| \boldsymbol{\Theta}_{l} \|_{F}^{2}$

Experiments on Synthetic Data

 $X = W_3 Tanh(W_2 Tanh(W_1 Z)), X = (Cosine(X) + X),$ where $W_1 \in \mathbb{R}^{50 \times 10}, W_2 \in \mathbb{R}^{100 \times 50}, W_3 \in \mathbb{R}^{300 \times 100},$ and $Z \in \mathbb{R}^{10 \times 3000}$.

Figure: Recovery performance on synthetic data (300×3000) in the setting of **MCAR**. (a) Influence of missing rate. Network structure: AEMC 300-100-30-100-300; AEMC+ 300-100-30-100-300; AEMC++ 300-100-30-100-100-100-300; AEMC-NE 300-100-30-100-300 for the main network and 1 - w - w - 1 for the element-wise network, where w = 20. (b) AEMC-NE with different width (*w*) of the hidden layers in the element-wise network. (c) Influence of the width (middle layer) of the main network. The missing rate is 0.5 and w = 20. (d) Influence of the weight decay ($\lambda_W = \lambda_{\Theta}$). The missing rate is 0.5 and w = 20.

 $\boldsymbol{X} = \boldsymbol{W}_3 \operatorname{Tanh}(\boldsymbol{W}_2 \operatorname{Tanh}(\boldsymbol{W}_1 \boldsymbol{Z})), \ \boldsymbol{X} = (\operatorname{Cosine}(\boldsymbol{X}) + \boldsymbol{X}), \text{ where} \ \boldsymbol{W}_1 \in \mathbb{R}^{50 \times 10}, \ \boldsymbol{W}_2 \in \mathbb{R}^{100 \times 50}, \ \boldsymbol{W}_3 \in \mathbb{R}^{300 \times 100}, \text{ and } \boldsymbol{Z} \in \mathbb{R}^{10 \times 3000}.$

Missing rate	0.2	0.3	0.4
AEMC	$0.170_{\pm 0.002}$	$0.171_{\pm 0.001}$	$0.180_{\pm 0.003}$
AEMC-NE	$0.101_{\pm 0.002}$	$0.106_{\pm 0.003}$	$0.109_{\pm 0.004}$
Missing rate	0.5	0.6	0.7
Missing rate AEMC	0.5 0.187 _{±0.002}	0.6 0.211 _{±0.003}	0.7 0.268 _{±0.004}

Table: Rcovery performance on synthetic data in the setting of MNAR

Model	ML-100k	ML-1M	ML-10M
BiasMF	0.911	0.845	0.803
LLORMA	0.8881	0.833	0.782
GC-MC	0.905	0.832	0.777
AutoSVD++	0.904	0.848	-
AutoSVD	0.901	0.86	-
CF-NADE	-	0.829	0.771
DMF+	0.8889	0.8321	-
IMC-GAE	0.897	0.829	-
GHRS	0.8887	0.833	0.782
AEMC (AutoRec)	-	$0.831 {\pm}~0.003$	$0.782{\pm}\ 0.003$
AEMC (ReLU)	0.8807 ± 0.0092	0.8276 ± 0.0025	0.7851 ± 0.0029
AEMC-NE (ours)	$\textbf{0.8767} \pm 0.0089$	$\textbf{0.8248} \pm 0.0024$	$\textbf{0.7723} \pm 0.0025$

More numerical results as well as the generalization bounds can be found in our paper.

Thanks for your attention!