

Dynamic Sparse Training with Structured Sparsity

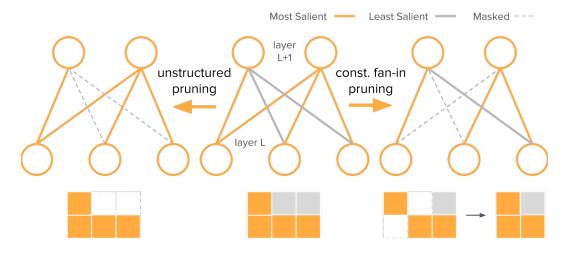
Mike Lasby¹, Anna Golubeva^{2,3}, Utku Evci⁴, Mihai Nica^{5,6}, Yani Ioannou¹

¹University of Calgary, ²MIT, ³IAIFI, ⁴Google DeepMind, ⁵University of Guelph, ⁶Vector Institute for AI

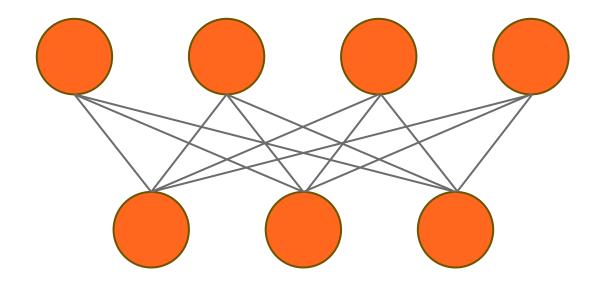
Motivation

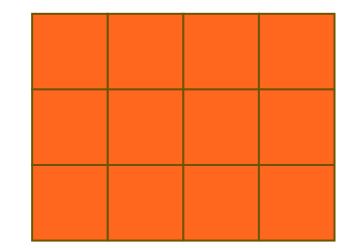
- Unstructured Dynamic Sparse Training (DST) matches the generalization performance of dense models with 85-95% fewer weights
- Accelerating unstructured Sparse Neural Networks (SNNs) is challenging
- Structured SNNs are easy to accelerate, but do not generalize as well as unstructured.
- Can we use DST to learn a SNN with high generalization performance that is also amenable to acceleration?

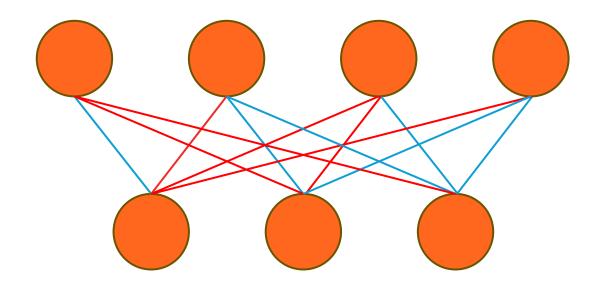
Method: Structured RigL (SRigL)

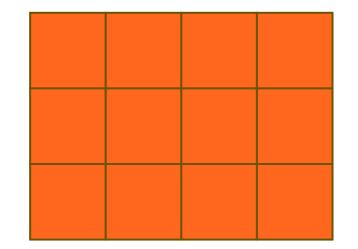


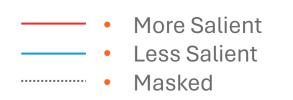
- Sparse-to-sparse DST method which extends RigL to learn a structured SNN
- Learns specific type of N:M sparsity where M is dense fan-in
- Constant fan-in constraint applied to each neuron within a given layer to enable efficient and compressible indexing of non-zero weights

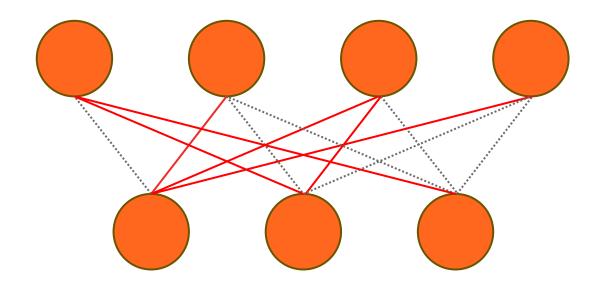


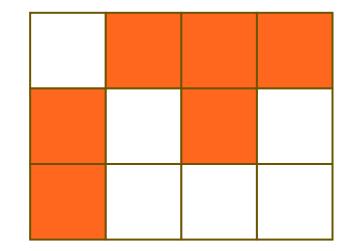


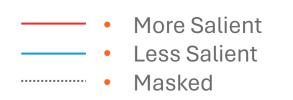


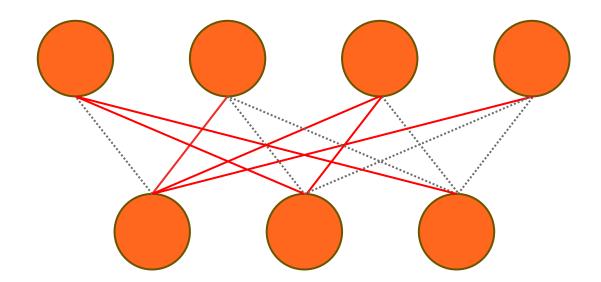


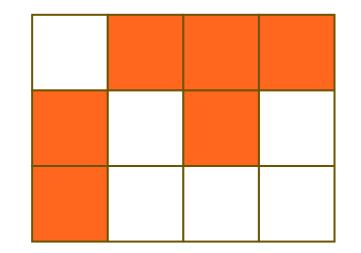


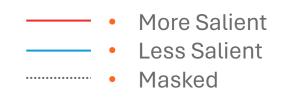




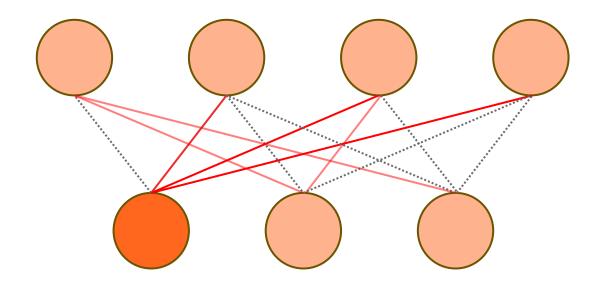


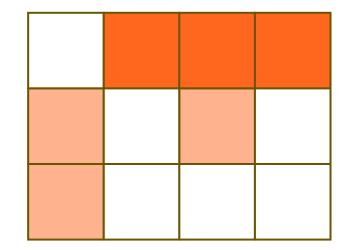


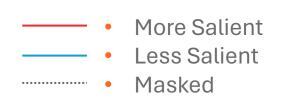


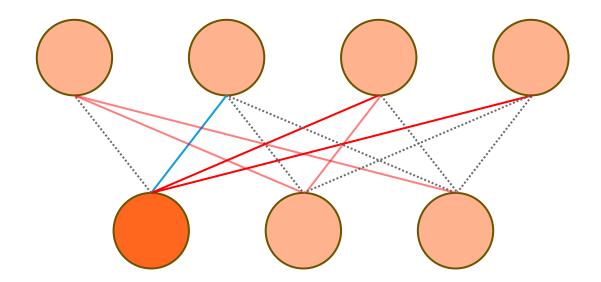


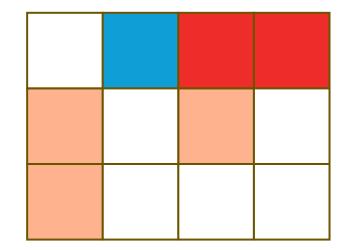
Noncontiguous weights make acceleration a challenge!

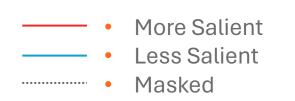


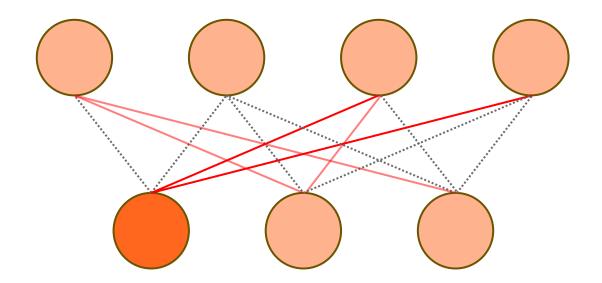


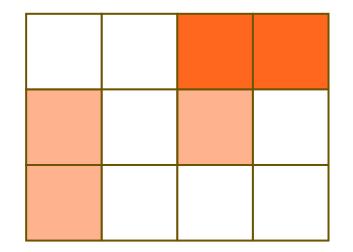


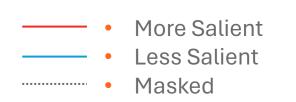


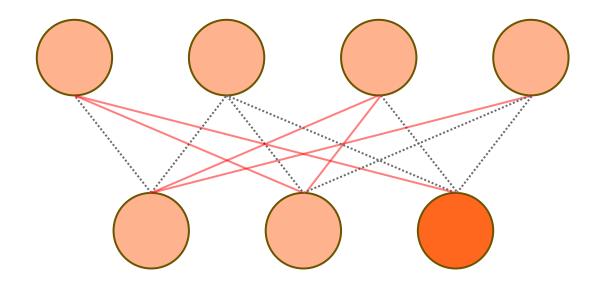


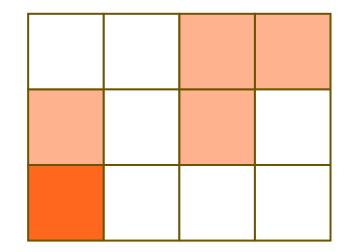


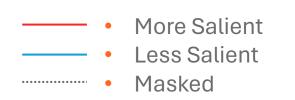


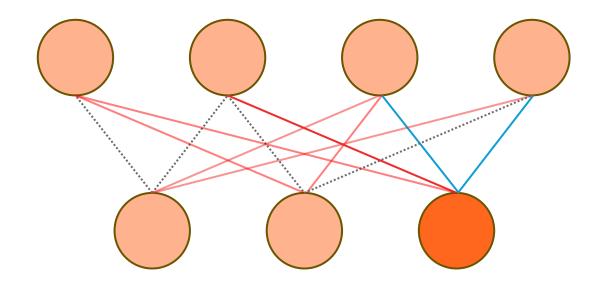


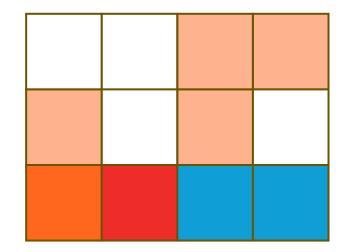


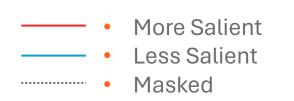


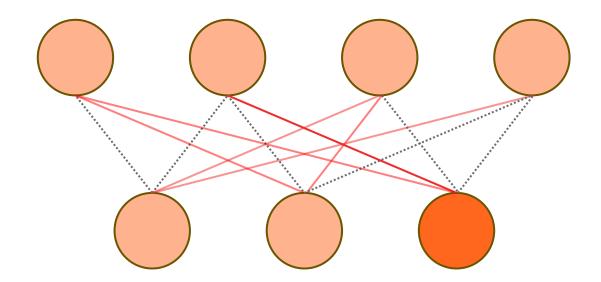


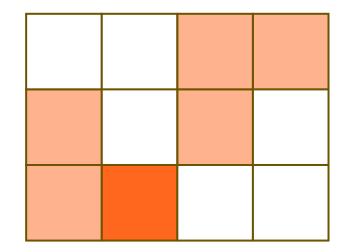


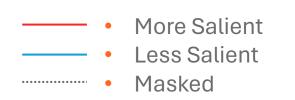


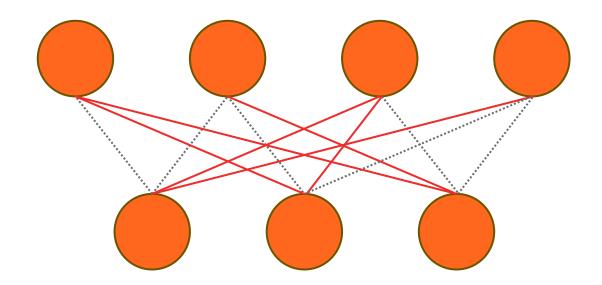


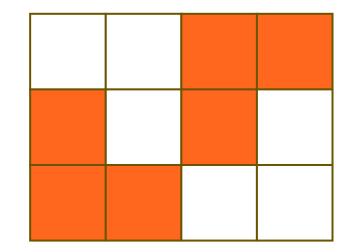


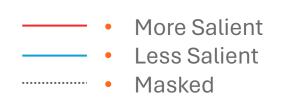


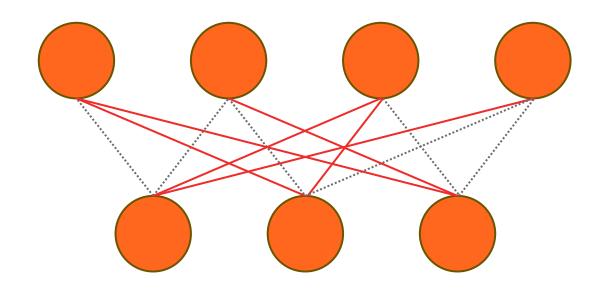


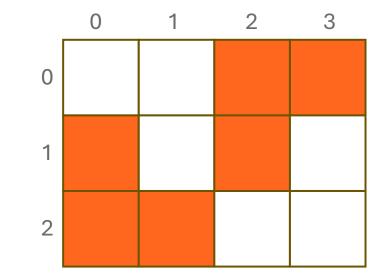


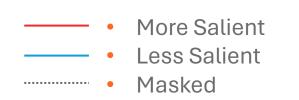


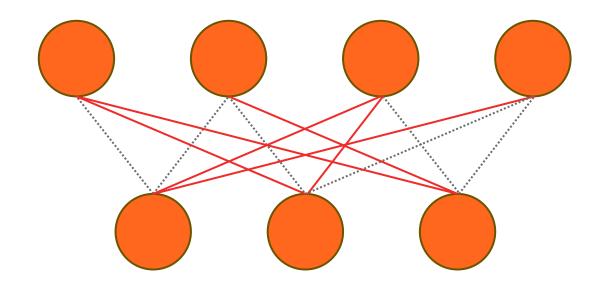




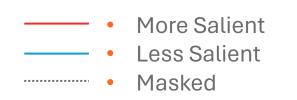


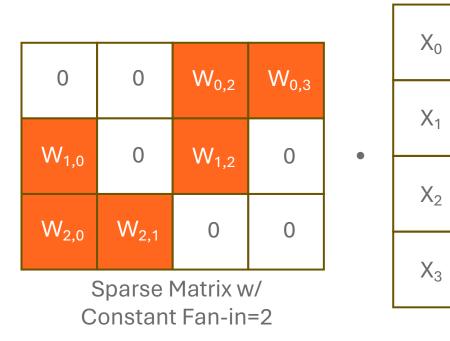


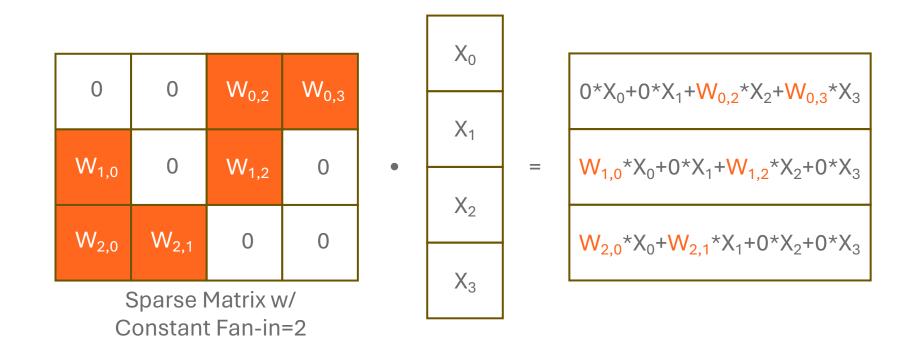


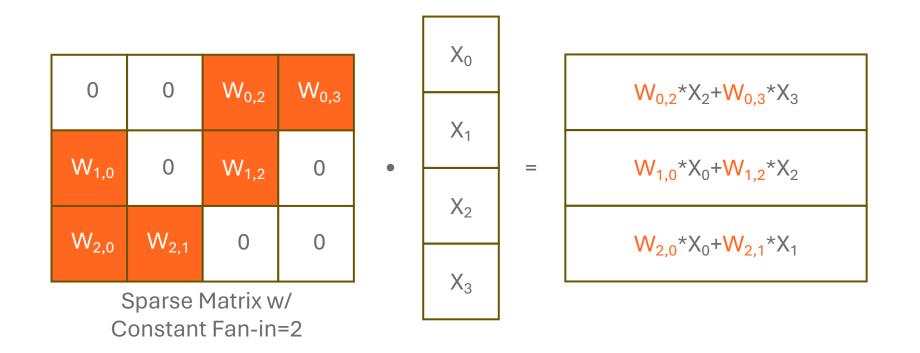


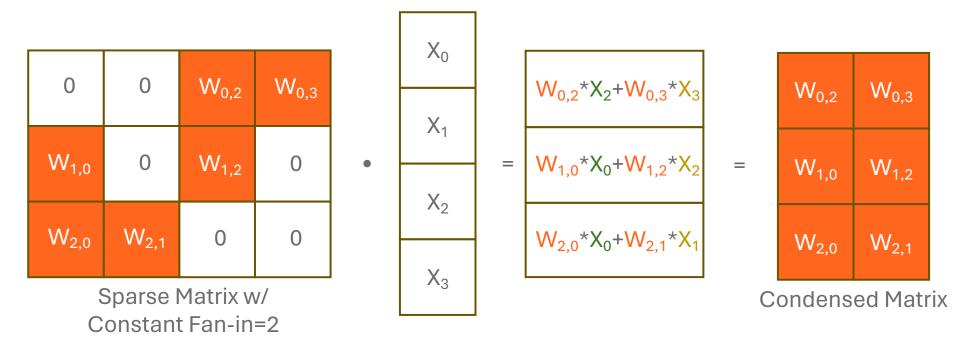
W _{0,2}	W _{0,3}
W _{1,0}	W _{1,2}
W _{2,0}	W _{2,1}

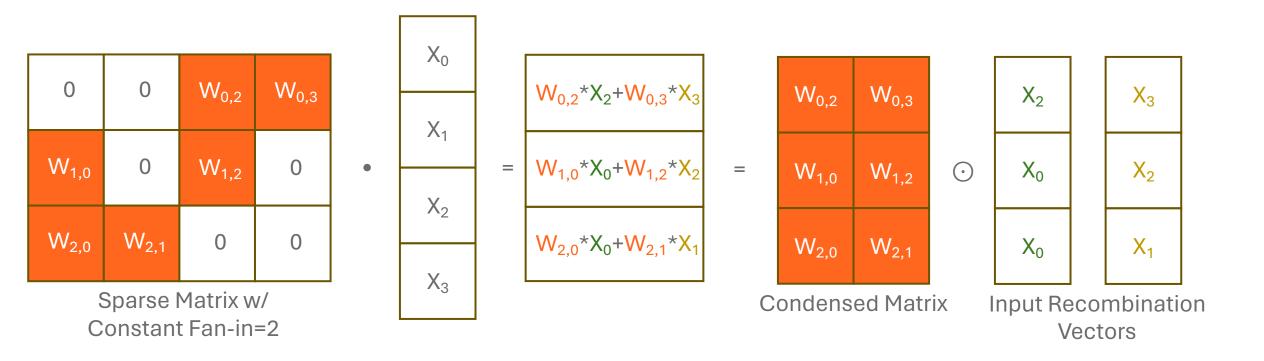






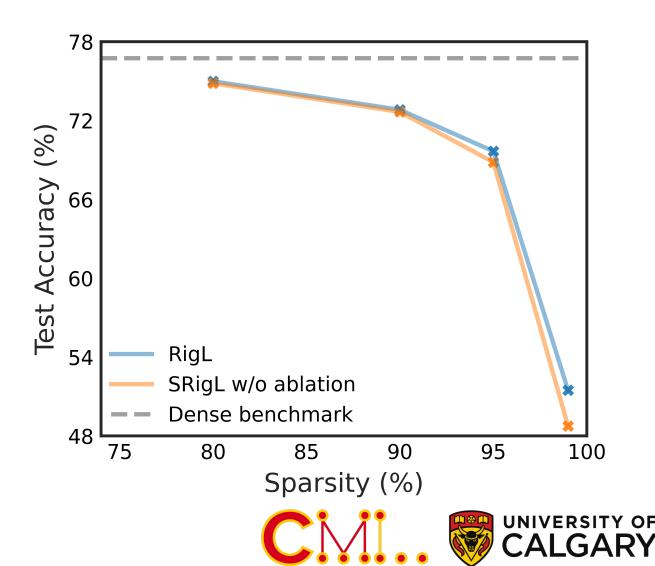




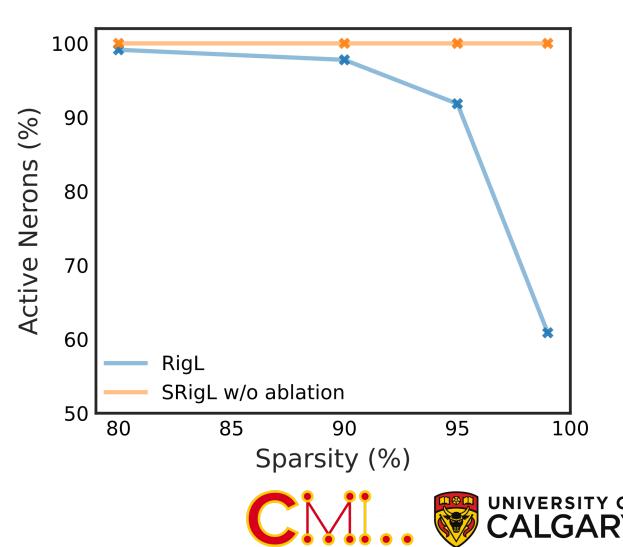


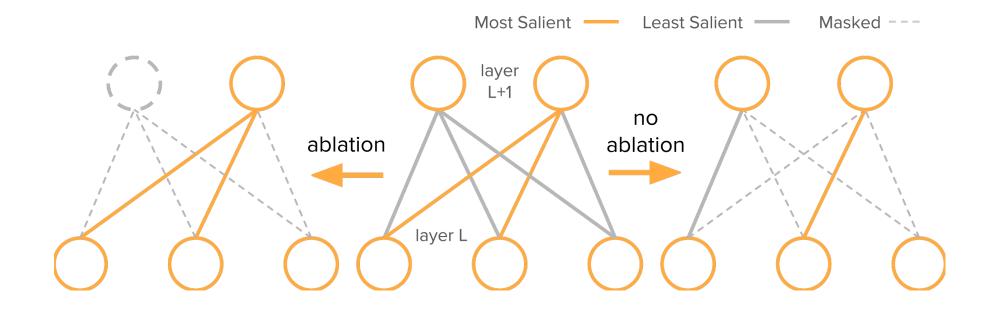
Initial Results (ImageNet/ResNet50)

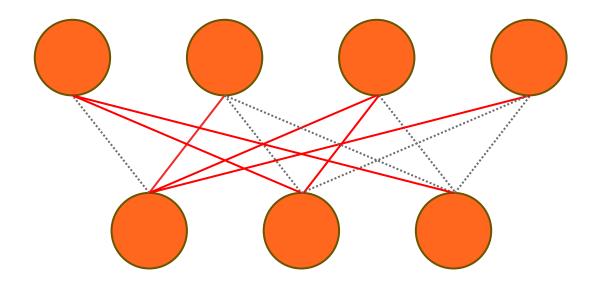
- We saw similar generalization with constant fan-in as RigL up to 90% sparsity
- At high sparsities (>= 90%) we found constant fan-in did not match RigL results...

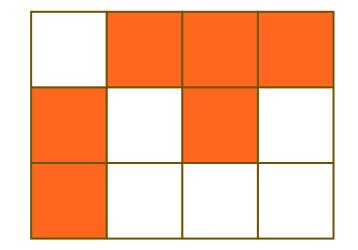


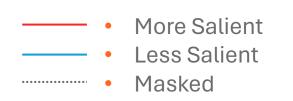
- At high sparsities (>= 90%) we found that RigL ablates many neurons
- Effectively RigL at high sparsity learns to reduce the width of layers!
- However, a naïve constant fanin constraint prohibits removal of neurons, decreasing performance

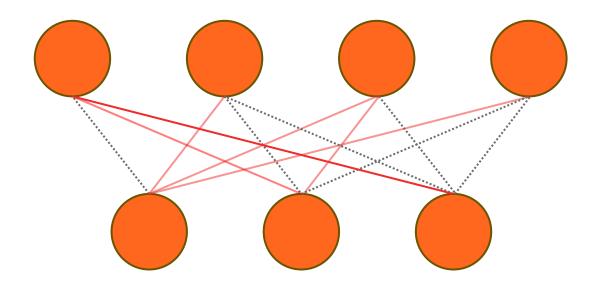


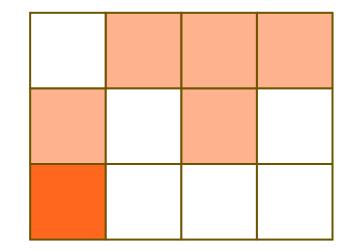


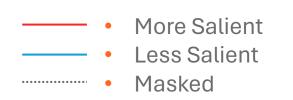


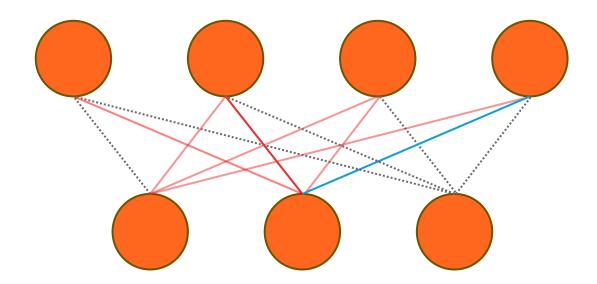


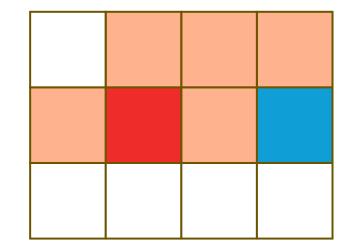


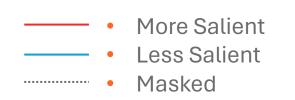


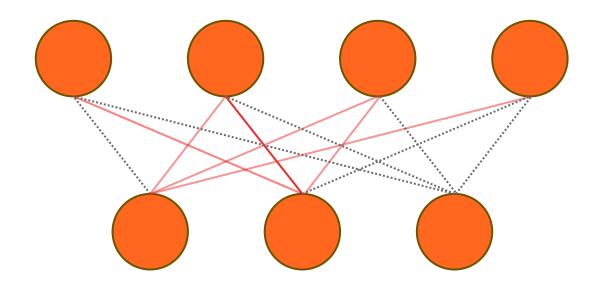


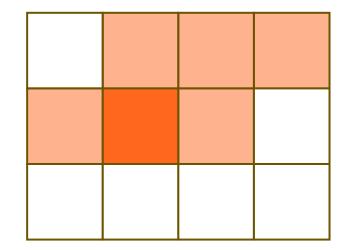


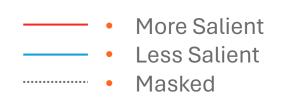


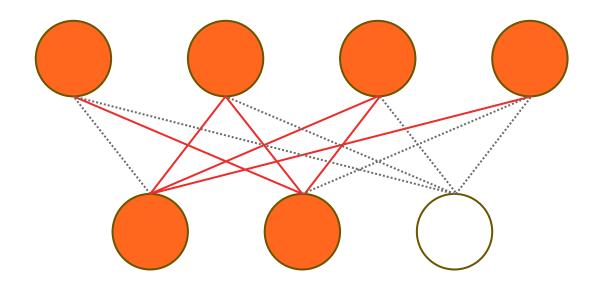


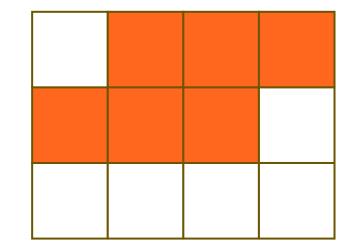


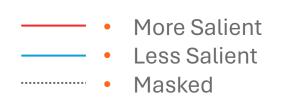


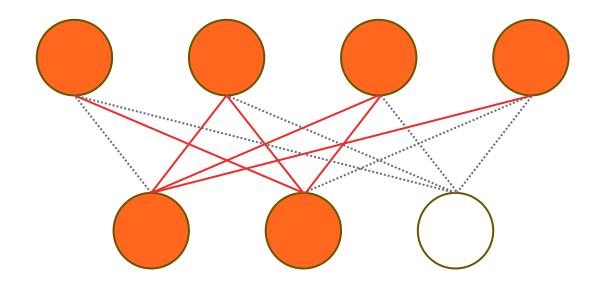




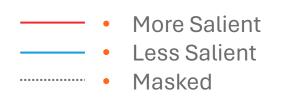






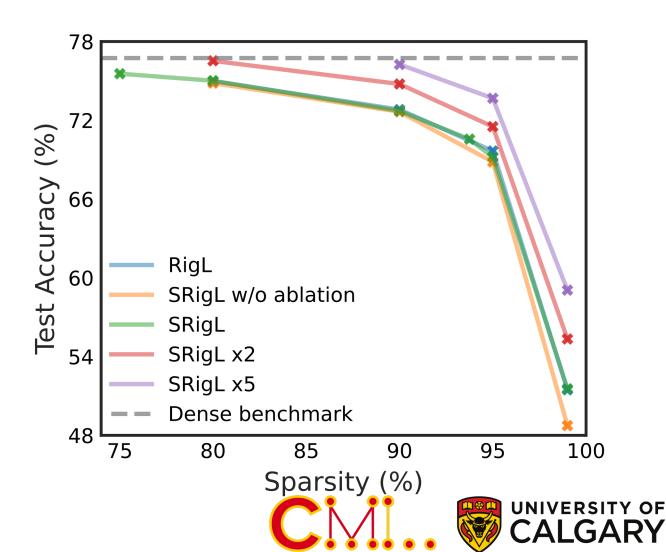


W _{0,1}	W _{0,2}	W _{0,3}
W _{1,0}	W _{1,1}	W _{1,2}



ImageNet/ResNet-50

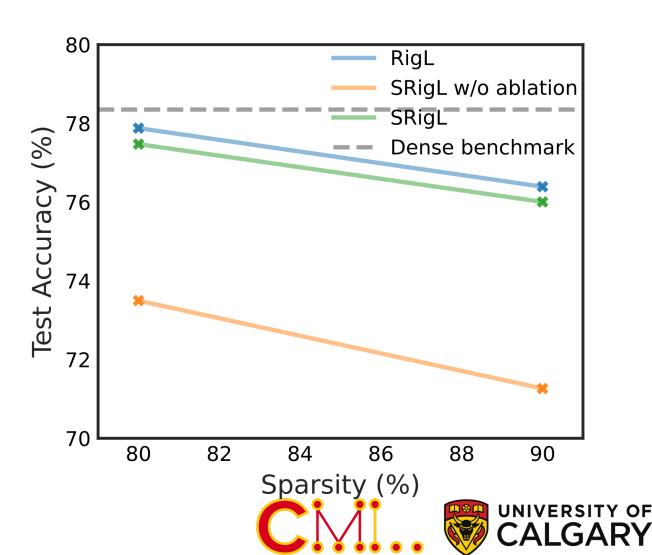
- SRigL matches the performance of RigL at modest sparsities
- At high sparsities, ablation is required to maintain generalization
- Extended training of SRigL w/ablation matches dense benchmark, even at 90% sparsity (like RigL)!



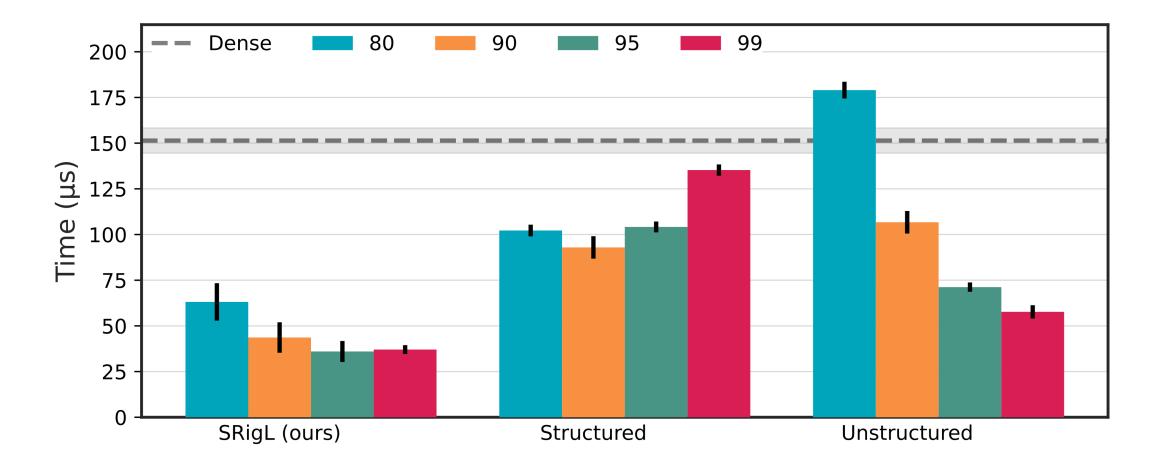
ImageNet/ViT-B-16

- SRigL also works well with transformer models
- Neuron ablation is even more effective

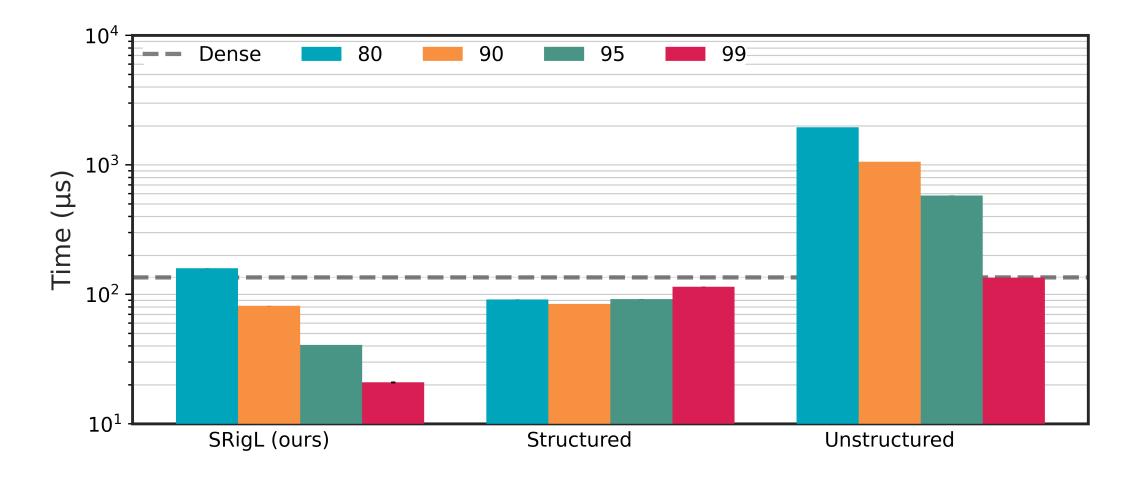
with ViT compared to convolutional models



Acceleration - CPU, batch size = 1



Acceleration - GPU, batch size = 2048



Dynamic Sparse Training with **Structured Sparsity**

Thank you!

Mike Lasby

Utku Evci

Mihai Nica

Yani Ioannou

Y OF