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Motivation

• Unstructured Dynamic Sparse Training (DST) matches the 
generalization performance of dense models with 85-95% fewer 
weights

• Accelerating unstructured Sparse Neural Networks (SNNs) is 
challenging

• Structured SNNs are easy to accelerate, but do not generalize as 
well as unstructured.

• Can we use DST to learn a SNN with high generalization 
performance that is also amenable to acceleration?



Method: Structured RigL (SRigL)

• Sparse-to-sparse DST method which extends RigL to learn 
a structured SNN

• Learns specific type of N:M sparsity where M is dense fan-in
• Constant fan-in constraint applied to each neuron within a 

given layer to enable efficient and compressible indexing of 
non-zero weights
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Initial Results (ImageNet/ResNet50)

• We saw similar generalization 
with constant fan-in as RigL up 
to 90% sparsity

• At high sparsities (>= 90%) we 
found constant fan-in did not 
match RigL results…



Neuron Ablation

• At high sparsities (>= 90%) we 
found that RigL ablates many 
neurons

• Effectively RigL at high sparsity 
learns to reduce the width of 
layers!

• However, a naïve constant fan-
in constraint prohibits removal 
of neurons, decreasing 
performance
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ImageNet/ResNet-50

• SRigL matches the 
performance of RigL at 
modest sparsities

• At high sparsities, ablation 
is required to maintain 
generalization

• Extended training 
of SRigL w/ablation matches 
dense benchmark, even 
at 90% sparsity (like RigL)!
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ImageNet/ViT-B-16

• SRigL also works well 
with transformer models

• Neuron ablation is even 
more effective 
with ViT compared 
to convolutional models
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Acceleration - CPU, batch size = 1



Acceleration - GPU, batch size = 2048
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