Dynamic Sparse Training with
Structured Sparsity

Mike Lasby', Anna Golubeva?3, Utku Evci*, Mihai Nica>®, Yani loannou’

'University of Calgary, 2MIT, 3IAIFI, “Google DeepMind, *University of
Guelph, ®Vector Institute for Al

I A Google UHENERTY | % CNMN].. &) CALGARY



Motivation

* Unstructured Dynamic Sparse Training (DST) matches the
generalization performance of dense models with 85-95% fewer

weights
* Accelerating unstructured Sparse Neural Networks (SNNs) is
challenging

* Structured SNNs are easy to accelerate, but do not generalize as
well as unstructured.

* Can we use DST to learn a SNN with high generalization
performance that is also amenable to acceleration?

|l UNIVERSITY OF

& CALGARY




Method: Structured ngL (SngL)
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« Sparse-to-sparse DST method which extends RigL to learn
a structured SNN

 Learns specific type of N:M sparsity where M is dense fan-in

» Constant fan-in constraint applied to each neuron within a
given layer to enable efficient and compressible indexing of
non-zero weights
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Unstructured vs. Constant Fan-In Sparsity
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Unstructured vs. Constant Fan-In Sparsity

—— * More Salient Noncontiguous weights make acceleration a challenge!
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Unstructured vs. Constant Fan-In Sparsity

— + More Salient
- Less Salient
................. ° MaSked

il UNIVERSITY OF

Cl\/l .. & CALGARY




Unstructured vs. Constant Fan-In Sparsity

— + More Salient
S Less Salient
................. ° MaSked

il UNIVERSITY OF

&9 CALGARY

CM...



Unstructured vs. Constant Fan-In Sparsity

— + More Salient
- Less Salient
................. ° MaSked

il UNIVERSITY OF

Cl\/l .. & CALGARY




Unstructured vs. Constant Fan-In Sparsity

* More Salient
* Less Salient
................. * Masked

CN. .. @ EATEARY




Unstructured vs. Constant Fan-In Sparsity

— + More Salient
—— ¢ Less Salient
................. ° MaSked

il UNIVERSITY OF

¥) CALGARY




Unstructured vs. Constant Fan-In Sparsity

* More Salient
 Less Salient
................. * Masked

CN. .. @ EATEARY




Unstructured vs. Constant Fan-In Sparsity

More Salient
Less Salient
................. ° MaSked

il UNIVERSITY OF

&9 CALGARY

CM...



Unstructured vs. Constant Fan-In Sparsity

* More Salient
 Less Salient
................. ° MaSked

il UNIVERSITY OF

&) CALGARY

CM...
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Constant Fan-In Matrix Multiplication

Sparse Matrix w/
Constant Fan-in=2
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Constant Fan-In Matrix Multiplication

Xo
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Constant Fan-In Matrix Multiplication
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Constant Fan-In Matrix Multiplication

Wi 2*Xo+Wp 3% X5

W 0*Xo+ W4 2* X,

Sparse Matrix w/
Constant Fan-in=2

W3, 0*Xo*+ W3, 1*X;

Condensed Matrix

CM...

NS AN

@

UNIVERSITY OF

CALGARY



Constant Fan-In Matrix Multiplication
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Initial Results (ImageNet/ResNet50)
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* We saw similar generalization @ [———- T
with constant fan-in as RigL up .
to 90% sparsity S
* At high sparsities (>=90%) we & es
found constant fan-in did not >
match RigL results... £ 60
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Neuron Ablation

* At high sparsities (>=90%) we 100
found that RiglL ablates many
neurons < 9

. . . : . "
Effectively RigL at high s.parS|ty o
learns to reduce the width of g
layers! v 70

e However, a naive constant fan- E}
in constraint prohibits removal ~ °°
of neurons, decreasing o

performance
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Neuron Ablation

Most Salient == Least Salient = Masked

no
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Neuron Ablation
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ImageNet/ResNet-50

* SRigL matches the
performance of RigL at
modest sparsities

* At high sparsities, ablaticn
Is required to maintain
generalization

* Extended training
of SRigL w/ablation matches
dense benchmark, even
at 90% sparsity (like RigL)!
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ImageNet/ViT-B-16

* SRiglL also works well
with transformer models

* Neuron ablation is even
more effective
with ViT compared
to convolutional models
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Acceleration - CPU, batch size = 1
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Acceleration - GPU, batch size = 2048
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Dynamic Sparse Training with
Structured Sparsity

Thank you!
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