Our current (incomplete) understanding:

Outliers with Opposing Signals : :
Have an Outsized Effecton | bt St il RS i N

Neural Network Optimization Wh i c h Offe rs a CO h es ive exp I a N ati o N - Loss on planes points one way, loss on non-planes points

In the opposite direction. Combined, they form a narrow valley.

Elan Rosenfeld Andrej Risteski an d ad pOSS : b I e fo - 2. Early optimization approaches the minimum, balancing the

opposing signals, and proceeds “through the valley”.

» We uncover simple and consistent behavior in NN : : 3. (i) Align/amplify subnetworks — (i) Increase magnitude of
uncover simp stent . Observations like am |
optimization which naturally fits prior observations. opposing signals — (iij) Losses steepen — (iv) Valley sharpens.

4. Once step size is too large for curvature, iterates diverge. Then:

Edge of Stability Progressive Sharpening - Opposite group losses grow and oscillate

- Opposing signals decrease in magnitude, flattening the valley.

* It is Induced by paired groups of outliers which cause
large gradients pointing in opposite directions.

* We refer to them as Opposing Signals.
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Grokking Training Instabilities
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ResNet-18 Trained with Gradient Descent on CIFAR-10
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: Adaptive Methods
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Minimization

coincides with outlier loss spikes complexity over time

--------------------- : Batch Normalization Large Learning Rate

Is this specific to...

ConvNets? Vision? Cross-Entropy? Dropout Wel ght Decay

NO. Same occurs on

Transformers doing
next-token prediction.
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: Edge of stability exactly : ' Qutlier groups increase in
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Outliers dominate
SGD training dynamics
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NO. same occurs fitting a
polynomial with square loss.

NO. Same occurs on
Vision Transformers.
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Enables precise
predictions of
network behavior
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