Outliers with Opposing Signals Have an Outsized Effect on Neural Network Optimization

Andrej Risteski Elan Rosenfeld

- We uncover simple and consistent behavior in NN optimization which naturally fits prior observations.
- It is induced by paired groups of outliers which cause large gradients pointing in opposite directions.
- We refer to them as **Opposing Signals**.

We identify a new phenomenon which offers a cohesive explanation and a possible *common cause* for:

Edge of Stability

Grokking

Simplicity Bias

Ind the benefits of

Adaptive Methods

Batch Normalization

Dropout

Progressive Sharpening

Training Instabilities

Spectrum Outliers

Sharpness-Aware Minimization

Large Learning Rate

Weight Decay

2. Early optimization approaches the minimum, balancing the opposing signals, and proceeds "through the valley".

) Align/amplify subnetworks \rightarrow (ii) Increase magnitude of opposing signals \rightarrow (iii) Losses steepen \rightarrow (iv) Valley sharpens.

4. Once step size is too large for curvature, iterates diverge. Then: - Opposite group losses grow and oscillate; - Opposing signals decrease in magnitude, flattening the valley.

Enables precise predictions of network behavior

Our current (incomplete) understanding:

1. At initialization, activations dominated by simple, large magnitude features (e.g. "sky background") \rightarrow large gradients. - Loss on planes points one way, loss on non-planes points in the **opposite direction**. Combined, they form a **narrow valley**.

VGG-11 SGD Loss on Opposing Groups

Outliers dominate SGD training dynamics

