
Outliers with Opposing Signals 
Have an Outsized Effect on  

Neural Network Optimization
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We identify a new phenomenon 
which offers a cohesive explanation 
and a possible common cause for:

Adaptive Methods Sharpness-Aware 
Minimization

Batch Normalization Large Learning Rate

Dropout Weight Decay

Edge of Stability Progressive Sharpening

Grokking Training Instabilities

Simplicity Bias Spectrum Outliers

• We uncover simple and consistent behavior in NN 
optimization which naturally fits prior observations. 

• It is induced by paired groups of outliers which cause 
large gradients pointing in opposite directions. 

• We refer to them as Opposing Signals.

Is this specific to…

Group 1

…Salcedo said of the work:[\n]

…Enter your email address:[\n]

…According to the CBO update:[\n]

…the Giants can still make the playoffs:[\n]

…2018.\n\nAccording to the CBO update:[\n]

…other than me being myself.”\n\nWATCH:[\n]


Group 2

…in Westminster. But to me it is obvious: [the]
…is the same as that on the model above: [the]
…acts of love, both divine and human: [the]
…the Kurds’ two main political parties: [the]
…of precisely what makes it so wonderful: [the]
…no doubt noticed something was missing: [the]
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Our current (incomplete) understanding: 
1. At initialization, activations dominated by simple, large  

magnitude features (e.g. “sky background”)  large gradients. 
    - Loss on planes points one way, loss on non-planes points  
       in the opposite direction. Combined, they form a narrow valley. 

2. Early optimization approaches the minimum, balancing the 
opposing signals, and proceeds “through the valley”. 

3. (i) Align/amplify subnetworks  (ii) Increase magnitude of 
opposing signals  (iii) Losses steepen  (iv) Valley sharpens. 

4. Once step size is too large for curvature, iterates diverge. Then:  
    - Opposite group losses grow and oscillate; 
    - Opposing signals decrease in magnitude, flattening the valley.
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And the benefits of
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VGG-11 SGD Loss on Opposing Groups

Loss on plane
Loss on other

Gradient Steps

Loss on Outliers

Projection onto  
1D Weight Space

p(plane ∣ sky) ≈ 1 p(other ∣ sky) ≈ 1 p(plane ∣ sky) ≈ 1 p(other ∣ sky) ≈ 1
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Outliers dominate  
SGD training dynamics

Enables precise 
predictions of 

network behavior

Observations like

0 60

1

2

3

4

5

6

Background Color

110 170

Lots of Red:
Auto vs. Other

2750 2810

Vehicular Features:
Auto vs. Truck

3080 3140

Grass Texture:
Frog vs. Other

Train Loss (Group 1)
Train Loss (Group 2)
Full Train Loss

0.0 0.2 0.4 0.6 0.8 1.0
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

0 25

0

20

G
ro

up
1

0 25

0

20

Background Color

0 25

0

20

0 25

0

20

G
ro

up
2

0 25

0

20

0 25

0

20

0 25

0

20

G
ro

up
1

0 25

0

20

Vehicular Features

0 25

0

20

0 25

0

20

G
ro

up
2

0 25

0

20

0 25

0

20

0 25

0

20
G

ro
up

1

0 25

0

20

Lots of Red

0 25

0

20

0 25

0

20

G
ro

up
2

0 25

0

20

0 25

0

20

0 25

0

20

G
ro

up
1

0 25

0

20

Grass Texture

0 25

0

20

0 25

0

20

G
ro

up
2

0 25

0

20

0 25

0

20

Edge of stability exactly 
coincides with outlier loss spikes

Outlier groups increase in 
complexity over time

  ConvNets? Vision? Cross-Entropy?
  No. Same occurs on  
   Vision Transformers.

No. Same occurs on 
Transformers doing  

next-token prediction.

No. Same occurs fitting a  
polynomial with square loss.
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ResNet-18 Trained with Gradient Descent on CIFAR-10
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