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Vision Transformers
Strengths

* Vision Transformers (ViTs) have gained popularity for various vision tasks

» Great capability in modeling long-range dependencies.
» Scalability for large-scale training.
» SOTA performance on downstream tasks such as classification, detection, etc.
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Vision Transformers

Weaknesses

* Despite their popularity, ViTs' are still NOT efficient to deploy
- Quadradic complexity of self-attention is expensive (both time and memory).
 Vanilla ViTs need a lot of data for training (lack of inductive bias).
» Certain operations are not supported in high performance inference engines like NVIDIA TensorRT.
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FasterViT

Motivated to address these issues, we introduce FasterViT which is a novel hybrid vision
transformer architecture designed for an optimal trade-off between performance and

iImage throughput.

FasterVIT for VS

Tailored to optimize throughput and GPU utilization.
Hierarchical Attention for efficient and scalable modeling of high-resolution images.

Outperforms and EfficientNetV2 by a large margin.
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Fast Vision Transformers with Hierarchical Attention

FasterViT comprises of hybrid architecture (CNN + ViT) with 4 different stages.

CNN-based stages are used to extract features in an efficient way.
In these stage, low-level features are mainly captured.

ViT-based stages learn high-level feature via our proposed hierarchical self-attention.
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Fast Vision Transformers with Hierarchical Attention

Hierarchical Self-Attention

» Hierarchical attention is a scalable self-attention block.

» Recursively learns a summary of each window region via carrier tokens.
» Performs cross-window interaction to capture long-range dependencies.
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Fast Vision Transformers with Hierarchical Attention
Design Insights

- Stages 1, 2 (CNN-based) are memory bound.

- We employ dense conv-based layers.
+ Although more parameter-heavy than depth-wise but better GPU utilization and throughput (e.g.

FP16, INT8) .
- We utilize BN layers (foldable in TensorRT) which are faster than LN.
- Conv-BN-RelLU are not used due training instabilities.

» Stages 3, 4 (ViT-based) are math-bound.
* We use LN for training stability and GELU for better performance.
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Fast Vision Transformers with Hierarchical Attention

Results

FasterViT achieves new Pareto Fronts (Top1 vs. throughput) on ImageNet-1K dataset
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81 | Model Throughput Top-1
| Swin-S 1720 83.2 |
| ConvNeXt-S 2008 83.1 '.
| FasterViT-2 3161 84.2 |
80{ Swin-B 1232 83.5 |
| ConvNeXt-B 1485 83.8
| FasterViT-3 1780  84.9
{ ConvNeXt-L 508 84.3 |
{ FasterViT-4 849 85.4 .
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4x Faster for Classification

Model Topl  Throughput (Image/Sec)
Swin Transformer (Microsoft)  83.8 168
FasterViT 34.0 605

High-resolution (512 x 512) ImageNet Benchmarks.

2X Faster for Detection

Backbone Head APPOx Throughput (Image/Sec)
ConvNeXt (Meta) MaskRCNN 51.9 127.8
FasterViT MaskRCNN 52.1 287.3

High-resolution (800 x 1216) Detection Benchmarks.
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Fast Vision Transformers with Hierarchical Attention

Hierarchical Self-Attention

* Dense attention maps demonstrate patterns of learning both local and global
interactions with carrier tokens.
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Conclusion

FasterViT is the current SOTA for Top-1 accuracy vs image throughput.

Hybrid FasterViT architecture is tailored to maximize GPU utilization and throughput.

Hierarchical attention is an efficient and scalable mechanism to capture long-range
spatial dependencies, especially for high-resolution images.
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https://github.com/NVlabs/FasterViT




	Slide 1: FasterViT: Fast Vision Transformers With Hierarchical Attention
	Slide 2: Vision Transformers
	Slide 3: Vision Transformers
	Slide 4: FasterViT
	Slide 5: Fast Vision Transformers with Hierarchical Attention
	Slide 6: Fast Vision Transformers with Hierarchical Attention
	Slide 7: Fast Vision Transformers with Hierarchical Attention
	Slide 8: Fast Vision Transformers with Hierarchical Attention
	Slide 9: Fast Vision Transformers with Hierarchical Attention
	Slide 10: Conclusion
	Slide 11

