

Hierarchical Attention

FasterViT: Fast Vision Transformers With

Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, Pavlo Molchanov

- Scalability for large-scale training.

Vision Transformers Strengths

 Vision Transformers (ViTs) have gained popularity for various vision tasks Great capability in modeling long-range dependencies.

SOTA performance on downstream tasks such as classification, detection, etc.

Vision Transformers Weaknesses

 Despite their popularity, ViTs' are still NOT efficient to deploy • Quadradic complexity of self-attention is expensive (both time and memory). Vanilla ViTs need a lot of data for training (lack of inductive bias). • Certain operations are not supported in high performance inference engines like NVIDIA TensorRT.

- image <u>throughput</u>.

FasterViT Fast and Scalable ViTs

 Motivated to address these issues, we introduce FasterViT which is a novel hybrid vision transformer architecture designed for an optimal trade-off between performance and

 FasterViT (SOTA for Top-1 vs image throughput) Tailored to optimize throughput and GPU utilization. • Hierarchical Attention for efficient and scalable modeling of high-resolution images. Outperforms FastViT and EfficientNetV2 by a large margin.

Fast Vision Transformers with Hierarchical Attention FasterViT

FasterViT comprises of hybrid architecture (CNN + ViT) with 4 different stages.

 CNN-based stages are used to extract features in an efficient way. In these stage, low-level features are mainly captured.

ViT-based stages learn high-level feature via our proposed hierarchical self-attention.

Fast Vision Transformers with Hierarchical Attention Hierarchical Self-Attention

Hierarchical attention is a scalable self-attention block. Recursively learns a summary of each window region via carrier tokens. Performs cross-window interaction to capture long-range dependencies.

Fast Vision Transformers with Hierarchical Attention Design Insights

- Stages 1, 2 (CNN-based) are memory bound. • We employ dense conv-based layers. Although more parameter-heavy than depth-wise but better GPU utilization and throughput (e.g.
 - FP16, INT8).
 - We utilize BN layers (foldable in TensorRT) which are faster than LN. Conv-BN-ReLU are not used due training instabilities.
- Stages 3, 4 (ViT-based) are math-bound. We use LN for training stability and GELU for better performance.

Fast Vision Transformers with Hierarchical Attention Results

FasterViT achieves new Pareto Fronts (Top1 vs. throughput) on ImageNet-1K dataset

4x Faster for Classification

lel	Top1	Throughput (Image/Sec)
n Transformer (Microsoft)	83.8	168
terViT	84.0	605

High-resolution (512×512) ImageNet Benchmarks.

2x Faster for Detection

bone	Head	AP ^{box}	Throughput (Image/Sec)
NeXt (Meta)	MaskRCNN	51.9	127.8
erViT	MaskRCNN	52.1	287.3

High-resolution (800×1216) Detection Benchmarks.

Fast Vision Transformers with Hierarchical Attention **Hierarchical Self-Attention**

Dense attention maps demonstrate patterns of learning both local and global interactions with carrier tokens.

- FasterViT is the current SOTA for Top-1 accuracy vs image throughput.
- Hybrid FasterViT architecture is tailored to maximize GPU utilization and throughput.
- Hierarchical attention is an efficient and scalable mechanism to capture long-range spatial dependencies, especially for high-resolution images.

Conclusion

https://github.com/NVlabs/FasterViT

