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O State Transition: The new state is obtained by swapping the pair of operations in

Contributions

O A novel learning-based improvement heuristic for job-shop scheduling (JSSP).
O The proposed methd has linear computational complexity.

Preliminaries

Job-Shop Scheduling Problem (JSSP).

O Asetofjobs ={,, .., },where has ={ ;..
d Machinesset ={ 4, .., }.

O A predefined processing order Ord: -
d Objective: | =

}operations 1< <

l=s <

{ =+ },and s starting time of
Disjunctive Graph (DG). ={ , , }, anexampleis Figure 1.
d Node set = , {. ., ., .

O Conjunction set : directed arcs representing precedent constrains.
O Disjunction set : undirected arcs connecting operations on the same machine.
O Solution of JSSP: fixing the direction of each disjunction - { }.

= 0, denoting the start and terminal.

Figure 1:Disjunctive graph representation.

Neighbourhood Structure: A widely-used local operator for JSSP.

Motivation

O The performance of learning-based constructive heuristics is far from optimality.
O Neural improvement operator has linear computational complexity.

Markov Decision Process (MDP) Formulation

O State: Any complete solutions represented as a disjunctive graph

O Action: Any eligible operation paris defined by the 5 neighbourhood structure.

O Reward: The difference on the objective (e.g., the makespan) between the
solution at current step and the incumbent.

current state.

Figure 2: Example of state transition.

O The improvement process: Improving the initial solution iteratively.
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Figure 3: The overall improvement process.

Parameterizing the Policy
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Figure 4. Policy Network.

Theoretical Findings

U Theorem 4.1: The proposed policy network has linear time complexity with
respect to both |J | and [M|, where |J| and |M| are the number of jobs and
machines, respectively.
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*Theorem 4.2: We propose a neural operator based on message passing

mechanism that can calculate the quality of a batch of JSSP solutions with
diverse size (emperically has linear computational complexity), which
significantly improve the GPU utilization for learning-based methods for JSSP.

Batch size 1 32 64 128 256 512
MP (CPU) 0.051s 0.674s 1.216s 2.569s 5.219s 10.258s

MP (GPU) 0.058s 0.094s 0.264s 0.325s 0.393s 0.453s
CPM (CPU) 0.009s 0.320s 0.634s 1.269s 2.515s 5.183s
Speedup 0.16x 3.40x 2.40x 3.90x 642x 11.4x

Experiment Results

d Benhmarks: Taillard, ABZ, FT, LA, SWV, ORB, YN, and Synthetic data.

1 Baselines:L2D (NeurlPS20), RL-GNN (IJPR21), ScheduleNet (23),
conventional improvement operators (e.g., greedy), OR-Tools (Google).

] Results:

1) Average optimality gap: ~5%.

2) Outperforms the exsisting learning-based methods by a large margin.



