

Deep Reinforcement Learning Guided Improvement Heuristic for Job Shop Scheduling

Paper & Code

Contributions

□ A novel learning-based improvement heuristic for job-shop scheduling (JSSP).

□ The proposed methd has linear computational complexity.

Preliminaries

Job-Shop Scheduling Problem (JSSP):

- □ A set of jobs $\mathcal{J} = \{J_1, ..., J_n\}$, where J_i has $O_i = \{O_{i1}...O_{in_i}\}$ operations $\forall 1 \leq i \leq n$.
- \square Machines set $\mathcal{M} = \{M_1, ..., M_m\}$.
- □ A predefined processing order Ord: $O_i \rightarrow M^{n_i}$, $\forall 1 \le i \le n$.
- □ Objective: $min_{S_{ij}, \forall O_{ij}}C_{max} = max_{i,j}\{C_{ij} = S_{ij} + p_{ij}\}$, and S_{ij} is starting time of O_{ij} .

Disjunctive Graph (DG): $G = \{O, C, D\}$, an example is Figure 1.

□ Node set $\mathcal{O} = \{O_{ij} | \forall i, j\} \cup \{S, T\}$: *S*, *T*, *p*_{*S*}, *p*_{*T*} = 0, denoting the start and terminal.

- \Box Conjunction set C: directed arcs representing precedent constrains.
- \Box Disjunction set \mathcal{D} : undirected arcs connecting operations on the same machine.
- □ Solution of JSSP: fixing the direction of each disjunction $\rightarrow G \in \{DAG | no cycle\}$.

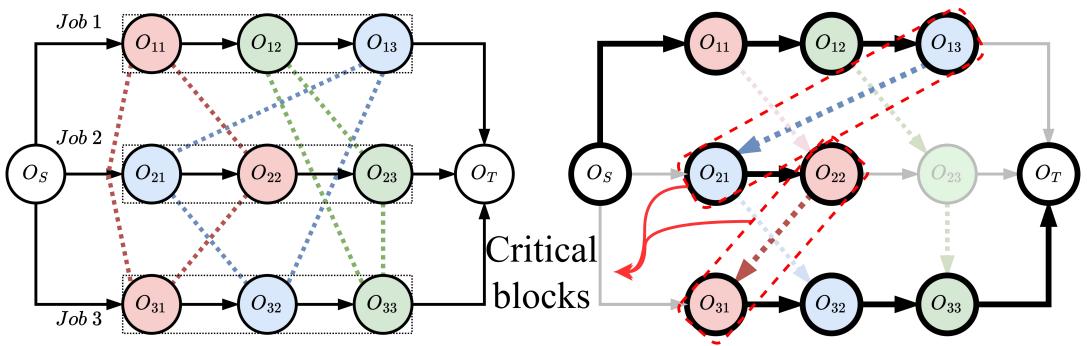


Figure 1: **Disjunctive graph representation.**

N₅ Neighbourhood Structure: A widely-used local operator for JSSP.

Motivation

- □ The performance of learning-based constructive heuristics is far from optimality.
- Neural improvement operator has linear computational complexity.

Markov Decision Process (MDP) Formulation

- **State**: Any complete solutions represented as a disjunctive graph
- \Box Action: Any eligible operation paris defined by the N_5 neighbourhood structure.
- **Reward**: The difference on the objective (e.g., the makespan) between the solution at current step and the incumbent.

Cong Zhang¹, Zhiguang Cao², Wen Song³, Yaoxin Wu⁴, and Jie Zhang¹ NANYANG SINGAPORE
NANYANG UNIVERSITY SINGAPORE
1 Nanyang Technological University, ²Singapore Management University, ¹Nanyang Technological University, ²Singapore Management University, ²Singapore Management University, ²Singapore Management University, ³Singapore Managem ³Shandong University, ⁴Eindhoven University of Technology **TU/e**

> □ State Transition: The new state is obtained by swapping the pair of operations in current state.

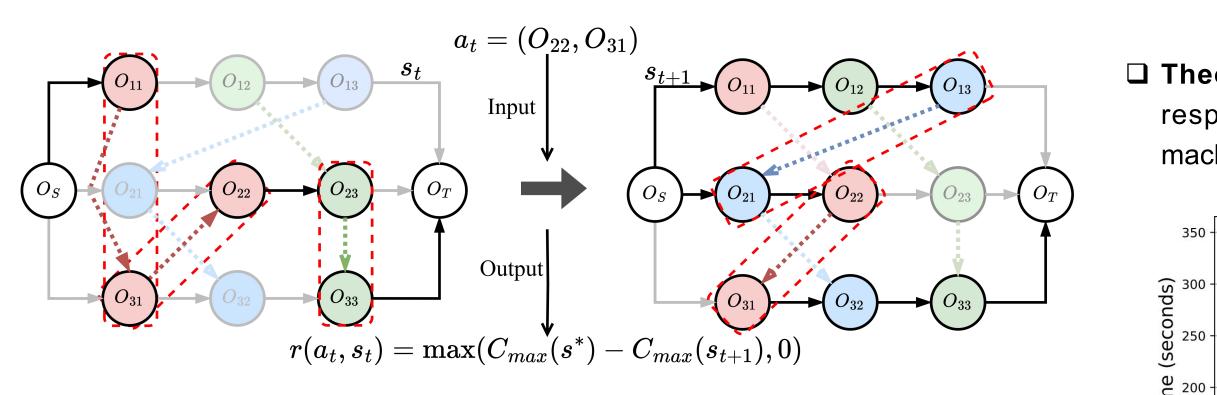


Figure 2: Example of state transition.

The improvement process: Improving the initial solution iteratively.

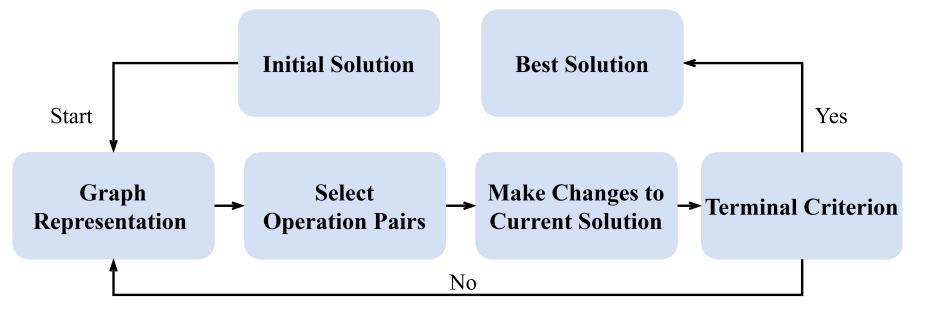


Figure 3: The overall improvement process.

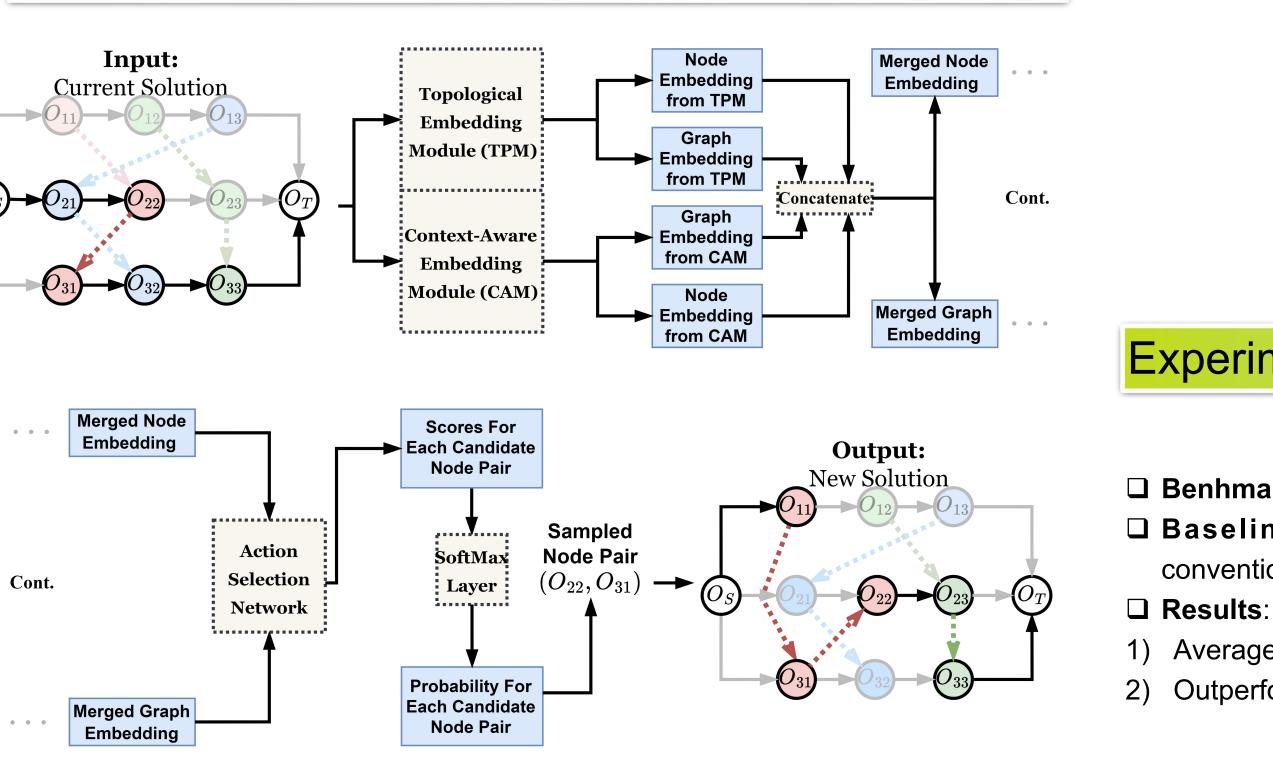
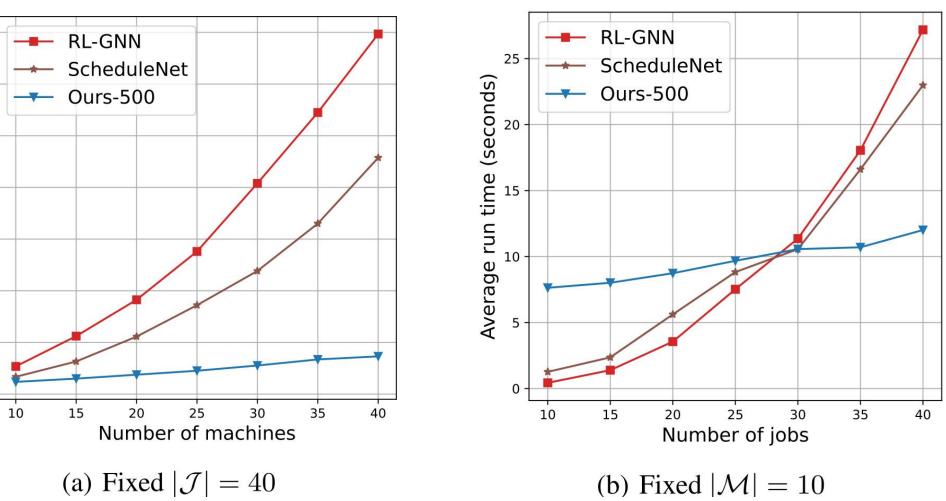


Figure 4. Policy Network.

Un 150 -

Theoretical Findings

Theorem 4.1: The proposed policy network has linear time complexity with respect to both |J | and |M|, where |J| and |M| are the number of jobs and machines, respectively.



Theorem 4.2: We propose a neural operator based on message passing mechanism that can calculate the quality of a batch of JSSP solutions with diverse size (emperically has linear computational complexity), which significantly improve the GPU utilization for learning-based methods for JSSP.

Batch size	1	32	64	128	256	512
MP (CPU)	0.051s	0.674s	1.216s	2.569s	5.219s	10.258s
MP (GPU)	0.058s	0.094s	0.264s	0.325s	0.393s	0.453s
CPM (CPU)	0.009s	0.320s	0.634s	1.269s	2.515s	5.183s
Speedup	0.16×	3.40×	$2.40 \times$	3.90×	6.42×	11.4×

Experiment Results

Benhmarks: Taillard, ABZ, FT, LA, SWV, ORB, YN, and Synthetic data.

- □ Baselines:L2D (NeurIPS20), RL-GNN (IJPR21), ScheduleNet (23), conventional improvement operators (e.g., greedy), OR-Tools (Google).
- 1) Average optimality gap: ~5%.
- 2) Outperforms the exsisting learning-based methods by a large margin.