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• Unify various adversarial algorithms through Unbalanced Optimal Transport Model (UOTM)

• Compare and analyze properties of adversarial algorithms through the unified perspective

• Improve adversarial algorithms based on our analysis

Overview



Notations

• Throughout the presentation, 𝜇 and 𝜈 is source (prior) and target (data) distribution, respectively.

• 𝑐 is a quadratic (transport) cost functional, i.e. 𝑐 𝑥, 𝑦 = 𝜏 ∥ 𝑥 − 𝑦 ∥2 .



Preliminaries

• UOT problem relaxes the hard constraint on marginal distributions into soft penalization.
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Preliminaries

Let 𝑔𝑖(𝑥) = −Ψ𝑖
∗(−𝑥) for simplicity. Note that 𝒄 𝒙, 𝒚 = 𝝉 𝒙 − 𝒚 𝟐.
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Semi-dual :
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Unified View of OT-based Adversarial Networks

• Let 𝑔𝑖(𝑥) = −Ψ𝑖
∗(−𝑥) for simplicity.

Primal :

Semi-dual :

Convex Indicator

OTM



Unified View of OT-based Adversarial Networks

• Let 𝑔𝑖(𝑥) = −Ψ𝑖
∗(−𝑥) for simplicity.

Primal :

Semi-dual :

KL divergence

𝝌𝟐 divergence
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Properties of OT-based Adversarial Networks

Note that 𝒄 𝒙, 𝒚 = 𝝉 𝒙 − 𝒚 𝟐.

• The presence of cost function 𝒄(⋅,⋅) mitigates mode collapse. [2]

• The strictly concave 𝒈𝟏&𝒈𝟐 helps stabilizing training. [2]

• UOT-based algorithms offers more outlier robustness. [1]
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Properties of OT-based Adversarial Networks

Note that 𝒄 𝒙, 𝒚 = 𝝉 𝒙 − 𝒚 𝟐.

• For UOTM, under some regularity condition, there exists unique Lipschitz continuous optimal

potential 𝒗⋆. Moreover, the collection of 𝒄-convex potential of UOTM which has a negative loss

satisfies equi-Lipschitzness. [2]
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Properties of OT-based Adversarial Networks

• Desirable properties of UOTMs

• Stabilize training (∵ concave 𝑔1 and 𝑔2)

• Prevent mode collapse (∵ cost function 𝑐)

• Robust to outliers (∵ soft marginal penalization)

• Lipschitzness of potentials

• Limitation of UOTMs

• Distributional matching error (∵ soft marginal penalization)

Soft Penalization



Improving OT-based Adversarial Networks

We introduce new hyperparameter 𝛼1 and 𝛼2. We gradually increase these hyperparameters while training.

Start training with 
UOTM algorithm 

(Small 𝛼1&𝛼2)

Gradually increase 𝛼1&𝛼2
for better distribution 

matching



Thank you!


