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In this talk

• Background: what is contrastive learning (CL)? 

• Motivation: Why view multiplicity? 

• Summary of theoretical contributions 

• How we expand CL using view multiplicity 

• Empirical Results and a new compute Pareto front



Contrastive Representation Learning (CL) in a nutshell 

1. Generate multiple views of samples         
(for example, with augmentations) 
• Positives: multiple views of same sample 
• Negatives: views of other samples 

2.Train an encoder to recognize similarities 
between positives while making negatives 
dissimilar
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es(iα,iβ) + ∑j≠i es(iα,jβ) ]

s(iα, jβ)

s(iα, iβ)

Loss is a lower bound to mutual information



Why only two views?

View Multiplicity: how many positives? 

• Helps the signal to noise ratio[1] 

• In contrastive learning: Always pairwise 
“tasks” (i.e. comparisons) 

• In multi-crop[2, 3]: more pairwise tasks from 
the same image (lowers the variance) 

• Poly-view (ours): few tasks with lots of positives 

• Why? More information in each task: better 
representations

[1] Stanislav Fort, Andrew Brock, Razvan Pascanu, Soham De, and Samuel L. Smith. Drawing multiple augmentation samples per image during training efficiently decreases test error, CoRR 2021
[2] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding, ECCV 2020
[3] Mathilde Caron, Ishan Misra, Julien Mairal, Prisa Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrastive cluster assignment, NeurIPS 2020
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We develop two ways of increasing the number of positives

1. Does more views share more information about
the generative factor? 

Generalizing the InfoMax proxy 

2. Does more views help to estimate the
conditional distribution of  given  better? 
Connecting Sufficient Statistics to InfoMax
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Multi-view and poly-view estimators are all related

Multi-view

M = 2
SimCLR/InfoNCE
I(x;y) � LInfoNCE

M � 2
Multi-Crop InfoNCE `(x,y)

I(x;y) � 1
M

PM
↵=1 `↵(x,y)

Poly-view

M � 2
Su�cient Statistics
I(x;Y) � LSu�Stats

M � 2
Generalized MI

I(x;Y) � LGenNWJ
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View Multiplicity improves ImageNet1k Performance

• Higher multiplicity means better results, but especially for poly-view 
• For Poly-view: reduce compute by trading batch size for multiplicity66
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Conclusions

• We studied the role of view multiplicity, giving rise to a new families of 
contrastive learning algorithms 

• View multiplicity theoretically and empirically improves representations 

• View multiplicity reveals that SimCLR (two views) is not compute 
optimal and increased multiplicity gives a new compute Pareto front for 
contrastive learning
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