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• Tackling non-stationarity, forgetting…
• Follow-The-Leader Online Learning

• Deep world models with replay?
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Locality Sensitive Sparse Encoding
• Random projection to high-d
• Sparse soft binning

Sparse online model learning

while true:

• Supervised learning experiments
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• Reinforcement Learning experiments

Error of MNIST reconstruction

• Learns incrementally online, without replay buffer
• Outperforms several continual learning techniques
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are first encoded by different methods to produce feature vectors, on which a linear layer is applied
to predict the clean images of the same size. We use mini-batch stochastic gradient descent to
optimize the weights of the linear layer until convergence. To keep the online update efficiency
similar, we keep the same number of non-zero entries for all encoding methods. The mean squared
errors on the test set for different patch sizes are reported in Table 1. We observe that Losse achieves
the lowest error across all patch sizes, justifying its representational strength over other non-linear
feature encoders. When compared with the NN baseline, which is a strong function approximator
but not an efficient online learner, linear models with Losse work better when the patch size is 36
or smaller, suggesting its sufficient capacity for problems with a moderate number of dimensions,
such as locomotion or robotics (Todorov et al., 2012; Zhu et al., 2020). See Appendix C.1 for more
experimental details.

Sparse Real-value 9 16 25 36 49

NN - - 0.36 0.35 0.34 0.34 0.33

Fourier 7 3 0.32 0.39 0.67 1.00 1.40
ReLU 37 3 0.35 0.34 0.37 0.39 0.43
Tile Code 3 7 0.36 0.39 0.51 0.61 0.73
Losse 3 3 0.28 0.29 0.31 0.34 0.40

Table 1: Properties of different encoding methods and
their mean squared errors on the image denoising task on
different patch sizes. All numbers are scaled by 10�1.
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Figure 4: Mean squared errors on the stream
learning task of different correlation levels. Solid
lines and shaded areas correspond to the means
and stand errors of 30 runs.

4.2 ONLINE LEARNING WITH COVARIATE SHIFT

Next, we consider a supervised stream learning setting, where we can precisely control the level
of covariate shift in the training data, and test the online learning capability of Losse-FTL against
the neural network counterpart. Similar to Pan et al. (2021), we create a synthetic data stream with
observations sampled from a non-stationary input distribution. Specifically, the synthetic data is
generated according to a Piecewise Random Walk. At each time step, the observation is sampled
from a Gaussian Xt ⇠ N (St, �2), where � is fixed and St drifts every ⌧ steps. The drifting follows
a Gaussian first order auto-regressive random walk St+1 = (1 � c)St + Zt, 8t mod ⌧ ⌘ 0, where
c 2 (0, 1] and Zt ⇠ N (0, �2) with a fixed �. For Xt = xt, the target is defined as yt = sin (2⇡x2

t ).

As proven in Pan et al. (2021), Xt can share the same equilibrium distribution but possess different
levels of temporal correlation if �, c, and � are properly chosen. It turns out the three scalars can
be uniquely determined by a single parameter d 2 [0, 1), which we call correlation level. When
d = 0, the generated data recovers i.i.d. property. Given the data stream {(xt, yt)}t2N, we fit
our model online and measure the mean squared error at the end of learning on a holdout test set,
which contains independent samples across all St. As a comparison, we use neural networks to
fit online as well as in batch and plot the errors under different correlation levels in Figure 4. The
results show that our method outperforms neural networks in two aspects. First, when the data
is i.i.d. (d = 0), Losse-FTL achieves a much lower error than NN-online. This indicates neural
networks with gradient descent have low sample efficiency, even on stationary data. Training NNs
using batch samples alleviates the issue and reaches a similar performance to ours. Second, our
model consistently attains very low error across all correlation levels, showing its capacity of non-
forgetting online learning. In contrast, neural networks learned with both batch and online updates
incur increasingly high errors when d is large, indicating catastrophic forgetting in the presence of
data nonstationarity. More experimental details can be found in Appendix C.2.

5 EMPIRICAL RESULTS ON REINFORCEMENT LEARNING

In this section, we will demonstrate that world models built with Losse-FTL can be accurately
learned online, outperforming several NN-based world model baselines and improving the data
efficiency of RL agents. We first introduce the settings and baselines in Section 5.1, and then
present our results in Section 5.2.
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Linear models learn online
analytically & incrementally

High-d random non-linear 
features boost capacity while 
sparsity bounds computation

MBRL needs online world models 
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