

Strategic Preys Make Acute Predators: Enhancing Camouflaged Object Detectors by Generating Camouflaged Objects

Introduction

Motivation:

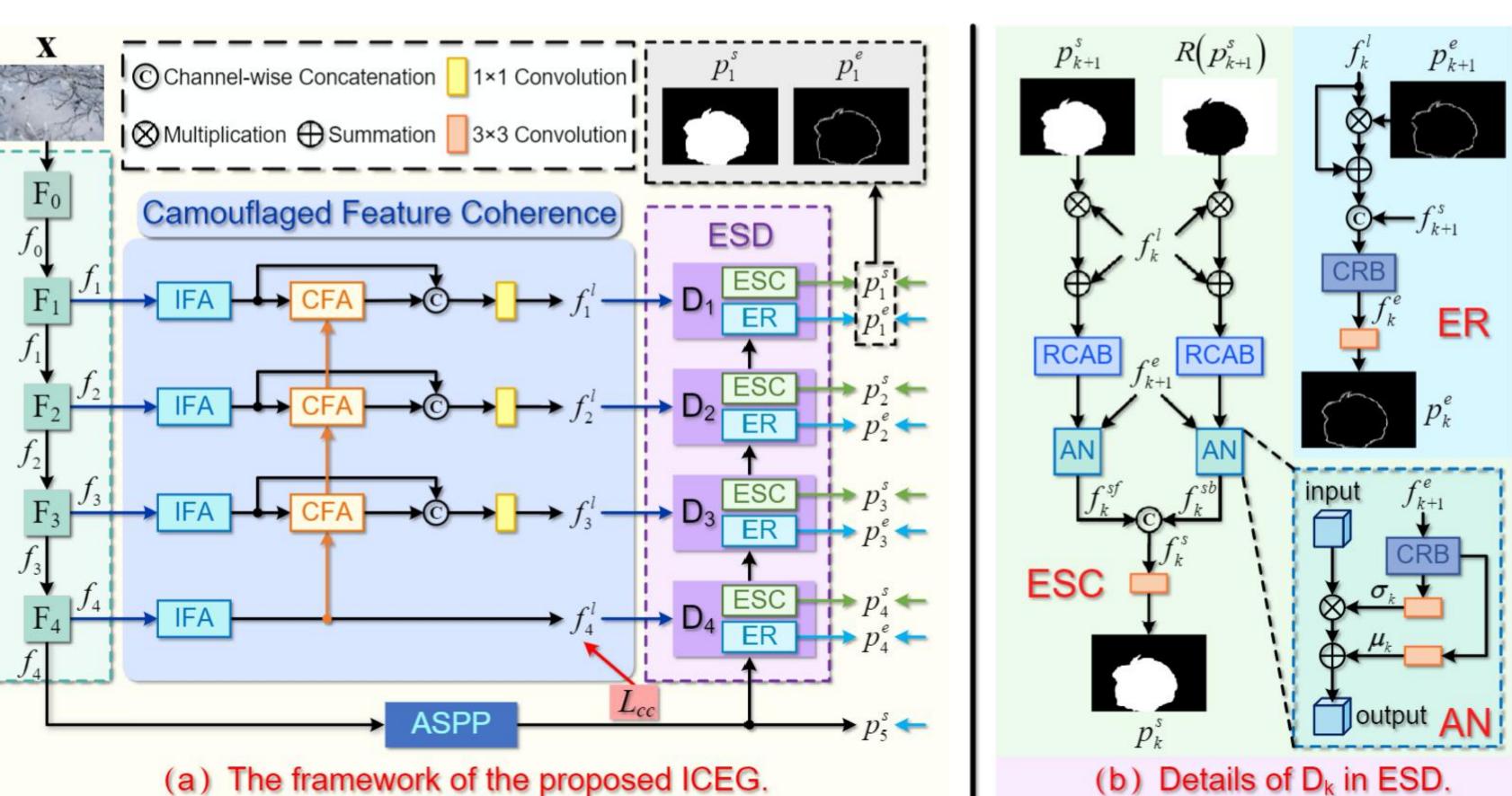
We are inspired by the prey-vs-predator game, where preys! develop more deceptive camouflage skills to escape ipredators, which pushes the predators to develop more acute vision systems to discern the camouflage tricks. This game leads to ever-strategic preys and ever-acute predators. With this inspiration, we propose to address COD by developing ! algorithms on both the prey side that generates more ideceptive camouflage objects and the predator side that produces complete and precise detection results.

Contribution:

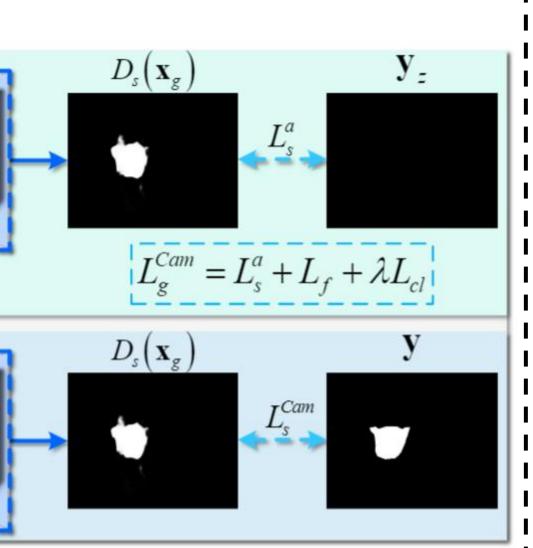
1. We design an adversarial training framework, Camouflageator, for the COD task. Camouflageator employs an auxiliary generator that generates more camouflaged ! objects that are harder for COD detectors to detect and hence enhances the generalizability of those detectors. Camouflageator is flexible and can be integrated with various existing COD detectors.

2. We propose a new COD detector, ICEG, to address the issues of incomplete segmentation and ambiguous! boundaries that existing detectors face. ICEG introduces a inovel CFC module to excavate the internal coherence of !camouflaged objects to obtain complete segmentation results, and an ESC module to leverage edge information to get precise boundaries.

3. Experiments verify that Camouflageator can promote the iperformance of existing COD detectors and ICEG significantly outperforms existing COD detectors.

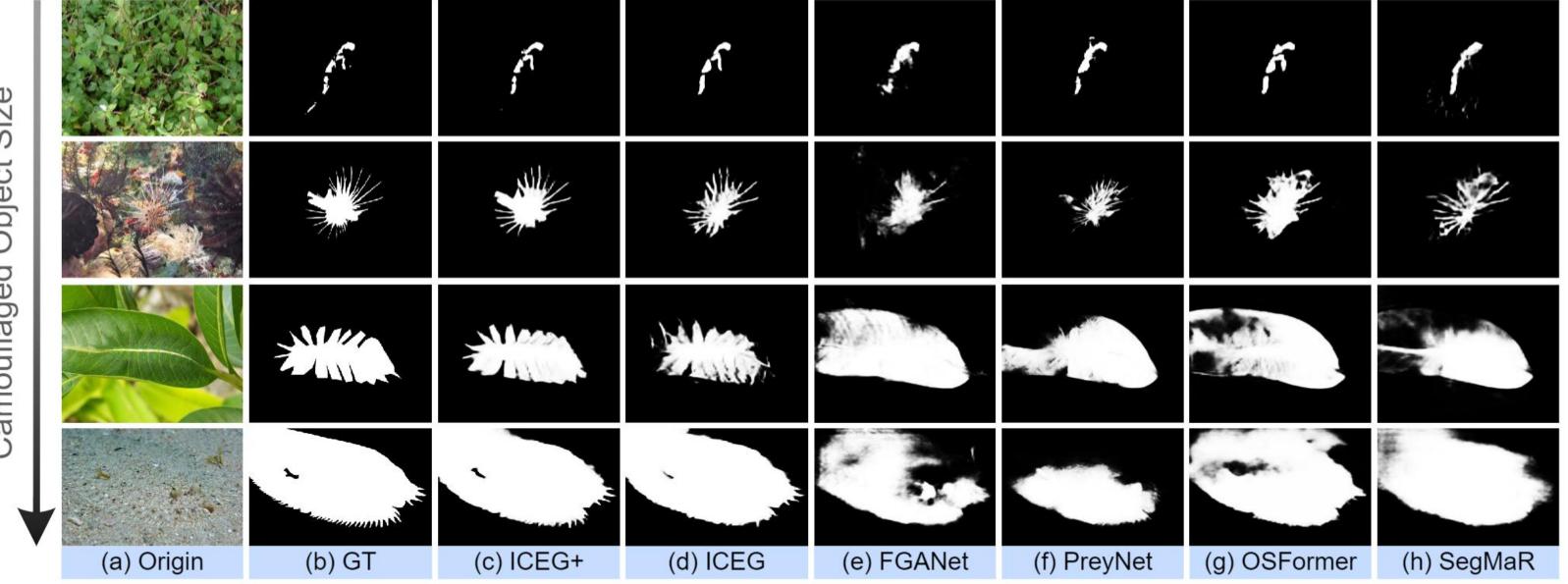

Chunming He¹, Kai Li^{2,*}, Yachao Zhang¹, Yulun Zhang³, Chenyu You⁴, Zhenhua Guo⁵, Martin Danelljan⁶, Fisher Yu⁶, Xiu Li^{1,*} ¹ Shenzhen International Graduate School, Tsinghua University, ² NEC Laboratories America, ³ Shanghai Jiao Tong University, ⁴ Yale University, ⁵ Tianyi Traffic Technology, ⁶ ETH Zürich,

Network architecture


Overall framework Phase 2 Alternation $L_c + \lambda L$ Phase I

In Phase I, we fix detector Ds and update generator Gc to synthesize more camouflaged objects to deceive Ds. In Phase II, we fix Gc and train the detector Ds to segment the synthesized image.

Architecture of our detector



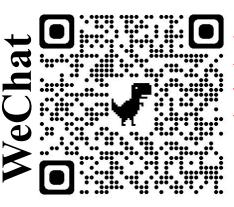
Framework of ICEG. CRB is the Conv-ReLU-BN structure.

Methods	Backbones		CHAM	ELEON	CAMO				COD10K			NC4K					
		$M\downarrow$	$F_{\beta}\uparrow$	$E_{\phi} \uparrow$	$S_{\alpha} \uparrow$	$M\downarrow$	$F_{\beta}\uparrow$	$E_{\phi} \uparrow$	$S_{\alpha} \uparrow$	$M\downarrow$	$F_{\beta}\uparrow$	$E_{\phi} \uparrow$	$S_{\alpha} \uparrow$	$M\downarrow$	$F_{\beta} \uparrow$	$E_{\phi} \uparrow$	$S_{lpha}\uparrow$
			Co	mmon S	Setting:	Single I	nput Sc	ale and	Single	Stage							
SegMaR-1 (Jia et al., 2022)	ResNet50	0.028	0.828	0.944	0.892	0.072	0.772	0.861	0.805	0.035	0.699	0.890	0.813	0.052	0.767	0.885	0.835
PreyNet (Zhang et al., 2022)	ResNet50	0.027	0.844	0.948	0.895	0.077	0.763	0.854	0.790	0.034	0.715	0.894	0.813	0.047	0.798	0.887	0.838
FGANet (Zhai et al., 2022)	ResNet50	0.030	0.838	0.944	0.896	0.070	0.769	0.865	0.800	0.032	0.708	0.894	0.803	0.047	0.800	0.891	0.837
FEDER (He et al., 2023c)	ResNet50	0.028	0.850	0.944	0.892	0.070	0.775	0.870	0.802	0.032	0.715	0.892	0.810	0.046	0.808	0.900	0.842
ICEG (Ours)	ResNet50	0.027	0.858	0.950	0.899	0.068	0.789	0.879	0.810	0.030	0.747	0.906	0.826	0.044	0.814	0.908	0.849
PreyNet+ (Ours)	ResNet50	0.027	0.856	0.954	0.901	0.074	0.778	0.869	0.808	0.031	0.744	0.908	0.833	0.044	0.821	0.912	0.859
FGANet+ (Ours)	ResNet50	0.029	0.847	0.948	0.899	0.069	0.781	0.877	0.814	0.030	0.735	0.911	0.823	0.045	0.814	0.905	0.854
FEDER+ (Ours)	ResNet50	0.027	0.855	0.947	0.895	0.068	0.793	0.883	0.820	0.030	0.739	0.905	0.831	0.043	0.820	0.910	0.845
ICEG+ (Ours)	ResNet50	0.026	0.863	0.952	0.903	0.066	0.805	0.891	0.829	0.028	0.763	0.920	0.843	0.041	0.835	0.922	0.869
SINet V2 (Fan et al., 2021)	Res2Net50	0.030	0.816	0.942	0.888	0.070	0.779	0.882	0.822	0.037	0.682	0.887	0.815	0.048	0.792	0.903	0.847
BGNet (Sun et al., 2022)	Res2Net50	0.029	0.835	0.944	0.895	0.073	0.744	0.870	0.812	0.033	0.714	0.901	0.831	0.044	0.786	0.907	0.851
ICEG (Ours)	Res2Net50	0.025	0.869	0.958	0.908	0.066	0.808	0.903	0.838	0.028	0.752	0.914	0.845	0.042	0.828	0.917	0.867
ICEG+ (Ours)	Res2Net50	0.023	0.873	0.960	0.910	0.064	0.826	0.912	0.845	0.026	0.770	0.925	0.853	0.040	0.844	0.928	0.878
ICON (Zhuge et al., 2022)	Swin	0.029	0.848	0.940	0.898	0.058	0.794	0.907	0.840	0.033	0.720	0.888	0.818	0.041	0.817	0.916	0.858
ICEG (Ours)	Swin	0.023	0.860	0.959	0.905	0.044	0.855	0.926	0.867	0.024	0.782	0.930	0.857	0.034	0.855	0.932	0.879
ICEG+ (Ours)	Swin	0.022	0.867	0.961	0.908	0.042	0.861	0.931	0.871	0.023	0.788	0.934	0.862	0.033	0.861	0.937	0.883
				Other	r Setting	g: Multi	ple Inpu	at Scale	s (MIS)								
ZoomNet (Pang et al., 2022)	ResNet50	0.024	0.858	0.943	0.902	0.066	0.792	0.877	0.820	0.029	0.740	0.888	0.838	0.043	0.814	0.896	0.853
ICEG (Ours)	ResNet50	0.023	0.864	0.957	0.905	0.063	0.802	0.889	0.833	0.028	0.751	0.913	0.840	0.042	0.827	0.911	0.873
Other Setting: Multiple Stages (MS)																	
SegMaR-4 (Jia et al., 2022)	ResNet50	0.025	0.855	0.955	0.906	0.071	0.779	0.865	0.815	0.033	0.737	0.896	0.833	0.047	0.793	0.892	0.845
ICEG-4 (Ours)	ResNet50		0.870		0.907				0.823			0.920	0.843	0.043	0.824	0.915	0.860
変なが、いたないので、																	

-	G-4 (Ours)	ResNet50 ResNet50	0.855 0.870				
Size			1				
ct		sw///	WH				

Email: hcm21@mails.tsinghua.edu.cn **Code:**

! https://github.com/ChunmingHe/Camouflageator



Experiment

Qualitative and quantitative comparisons

Information

Fell free to contact me if you have any problem!