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Background



Information theory in deep learning

Applications:

• Generalization bounds
• Model selection, explainable AI
• Unsupervised representation learning
• Training objectives, regularization terms

Central information-theoretic quantities:

• Differential entropy: h(X) = −E log p(X) (p is PDF of X)
• Mutual information (MI): I(X; Y) = h(X)− h(X | Y)

Main difficulty:

• Hard to apply to real-world high-dimensional data (dim & 10− 100)
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Manifold hypothesis

Real-world data can be assumed to lie on or close to some low-dimensional
manifold.

NN-based MI estimators can grasp the latent structure of data, thus showing
relative practical success in dealing with the curse of dimensionality.
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Mutual estimation via compression



Mutual estimation via compression

We propose to utilize the manifold hypothesis explicitly by compressing data.

• We show that an explicit data compression allows for comparable or even
better estimation quality.

• We derive error bounds for the general case of MI estimation via lossy
compression.

3/17



Mutual estimation via compression

We propose to utilize the manifold hypothesis explicitly by compressing data.

• We show that an explicit data compression allows for comparable or even
better estimation quality.

• We derive error bounds for the general case of MI estimation via lossy
compression.

3/17



Mutual estimation via compression

We propose to utilize the manifold hypothesis explicitly by compressing data.

• We show that an explicit data compression allows for comparable or even
better estimation quality.

• We derive error bounds for the general case of MI estimation via lossy
compression.

3/17



Lossless compression

Result: Mutual information is not alternated via the lossless compression:

Theorem 1

Let ξ : Ω → Rn′ be an absolutely continuous random vector, let g : Rn′ → Rn be an
injective piecewise-smooth mapping with Jacobian J, satisfying n ≥ n′ and
det

(
JT J

)
6= 0 almost everywhere. Let h(ξ) and h(ξ | η) be defined. Then

I(ξ; η) = I
(
(g−1 ◦ g)(ξ); η

)
= I (g(ξ); η)

Here g−1 should be interpreted as a compression mapping (encoder), g(ξ) – as a
high-dimensional random variable.
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Lossy compression

Result: Mutual information alternation under lossy compression can be bounded.

Theorem 2

Let X, Y, and Z be random variables such that I(X; Y) and I ((X, Z); Y) are defined.
Let f be a function of two arguments such that I(f (X, Z); Y) is defined. If there
exists a function g such that X = g(f (X, Z)), then the following chain of
inequalities holds:

I(X; Y) ≤ I (f (X, Z); Y) ≤ I((X, Z); Y) ≤ I (f (X, Z); Y) + h(Z)− h(Z | X, Y)

f (X, Z) can be interpreted as compressed noisy data, X as denoised data, and g as
a perfect denoising decoder. Z regulates the deviation from the manifold.
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Lossy compression

X′
X
Z

ξ X
(noisy)

E D

ξ = f (X, Z) X = g(ξ)

I((X,Z);Y) I(ξ;Y) I(X;Y)≥ ≥

Figure 1: Conceptual scheme of Theorem 2 in application to the lossy compression via an
autoencoder A = D ◦ E.
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Lossy compression (independent noise)

Corollary 3

Let X, Y, Z, f , and g satisfy the conditions of the Theorem 2. Let random variables
(X, Y) and Z be independent. Then I(X; Y) = I((X, Z); Y) = I (f (X, Z); Y).
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Lossy compression (linear encoder)

Corollary 4
Let X be a random vector of dimension n, let Z ∼ N (0, σ2In), and X and Z be
independent. Let E be a PCA-projector to a linear manifold of dimension n′ with
explained variances denoted by λi in the descending order. Then

0 ≤ I(X + Z; Y)− I(E(X + Z); Y) ≤ n− n′

2
log

(
1+ λn′+1

σ2

)
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Experiments



Synthetic data

• We leverage the invariance of the mutual information under non-singular
mappings (see Theorem 1) to construct complex high-dimensional synthetic
tests with known ground-truth mutual information.

• Multivariate Gaussian distribution with known closed-form expression for
mutual information between subvectors is used as the base distribution.

• Injective smooth mappings are used to construct high-dimensional images
based on low-dimensional representations.
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Synthetic data

(ξ,η)∼N (0,M)

I(ξ;η)

ξ∼N (0,In′ )

η∼N (0,Im′ )

f1

g1

Î(f1(ξ);g1(η)) (optional)

f2

g2

Î(f (ξ);g(η))(optional)

f=f2◦f1

g=g2◦g1

EX

EY

Î((EX◦f )(ξ);(EY◦g)(η))

Figure 2: f1 : Rn′ → Rn′ maps ξ to a structured latent representation of X (e.g., parameters
of geometric shapes), and f2 : Rn′ → Rn maps latent representations to corresponding
high-dimensional vectors (e.g., rasterized images of geometric shapes). The same for
g = g2 ◦ g1.
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Synthetic data

Setup:

• Convolutional autoencoder is used to compress synthetic images.

• Simplest non-parametric mutual information estimators (KDE and
k-NN-based) are used to estimate MI between latent representations.

Results:

• Autoencoder + k-NN-based Weighted Kozachenko-Leonenko (WKL) estimator
shows decent quality, outperforming Mutual Information Neural Estimator
(MINE).
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Figure 3: Weighted Kozachenko-Leonenko and MINE, 16× 16 and 32× 32 images of
Gaussians (columns 1-2, n′ = m′ = 2) and rectangles (columns 3-4, n′ = m′ = 4), 5 · 103

samples. Along x axes is I(X; Y), along y axes is Î(X; Y). 12/17



Information Bottleneck analysis of CNN classifier

Setup:

• A CNN classifier of the MNIST handwritten digits dataset is considered.

• For every layer Li, I(X; Li) and I(Li; Y) are tracked, where X denotes the input, Y
denotes the target.

• After the training, for every Li the value of I(Li; Y) is plotted against I(X; Li)
(information plane plot).

• Parts of the IP-plot with the increasing I(Li; Y) correspond to the so-called
fitting phase, with the decreasing I(Li; Y) – to the compression phase (see the
fitting-compression hypothesis).
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(a) Negative log likelihood loss (train data)
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Figure 4: Information plane plots for the MNIST classifier. The lower left parts of the plots
(b)-(d) correspond to the first epochs. We use 95% asymptotic CIs for the MI estimates
acquired from the compressed data. The colormap represents the difference of losses
between two consecutive epochs. 14/17
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Î(L
,Y

)

Î(X, L)

0

1

2

3

∆
lo
ss
pe
re
po
ch
,×
10
2

(c) L4 (fully-connected, LeakyReLU)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.5 1 1.5 2 2.5 3 3.5 4
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Figure 4: Information plane plots for the MNIST classifier. The lower left parts of the plots
(b)-(d) correspond to the first epochs. We use 95% asymptotic CIs for the MI estimates
acquired from the compressed data. The colormap represents the difference of losses
between two consecutive epochs. 15/17



Information Bottleneck analysis of CNN classifier

Results:

• IP-plots are complex, with several fitting and compression phases.

• The first switch from fitting to compression corresponds to the rapid
decrease of the loss.
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Summary

Main contribution:

• New mutual information estimation method based on data compression
• Bounds for mutual information estimation via lossy compression
• Decent results during the high-dimensional synthetic tests
• Can complement any existing MI estimator.

Additional result:

• Our method in application to the CNN classifier reveals several compression
and fitting phases in the IP plot. The first switch between the phases
corresponds to the rapid decrease of the loss.
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Thank you for your attention!
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