

Better Neural PDE Solvers Through Data-Free Mesh Movers

Peiyan Hu¹, Yue Wang², Zhiming Ma¹ 1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences 2 Microsoft Research AI4Science

Corresponding to:

hupeiyan18@mails.ucas.ac.cn or

yuwang5@microsoft.com

Outline

- Motivation
- Background
- Theoretic analysis
- ➢ Our method:
 - Data-free mesh mover (DMM)
 - Moving mesh based neural PDE solver (MM-PDE)
- Experiment

Motivation

- > 1. Predefined static mesh discretizations
- \geq 2. Adaptive and dynamic meshes:
 - > (1) Need for expensive optimal mesh data
 - > (2) Change of the solution space's degree of freedom and topology during mesh refinement

Background

> What is the mesh mover?

find a target mesh <-> find a coordinate transformation mapping

 $f:[0,T]\times\Omega\to\Omega,$

Background

≻How to define a optimal moving mesh?

- > Define a function to control the density of mesh: the **monitor function** M = M(x) is a matrixvalued metric function on Ω , its corresponding **mesh density function** $\rho = \sqrt{det(M(x))}$
- > *M*-uniform mesh: The adaptive mesh moved according to *M* (or ρ).

Intuitively, mesh movement is to uniformize cells' volumes under M.
 Region with larger value of M <-> larger mesh density.

Background

> The specific relationship between $M(or \ \rho)$ and the mesh (f):

> Monge-Ampere equation (a unique convex solution)

$$\det \left(H(\phi) \right) = \frac{\sigma}{\left| \Omega \right| \rho \left(\nabla_x \phi \right)},$$

where ϕ is the potential function of f, i.e., $f(x) = \nabla_x \phi$, $H(\phi)$ is the Hessian matrix. > Boundary condition:

$$\nabla_x \phi(\partial \Omega) = \partial \Omega$$

Choose optimal monitor function with theoretic guarantee

➤The form of optimal monitor funciton:

- > The optimal monitor function is proportional to $\langle u \rangle_{W^{l,p}(K)}$.
- ➤ Regions where derivatives are larger -> larger M -> higher mesh densities.

Proposition 1(Huang & Russell, 2010) On mesh \mathscr{T} 's every cell K, the optimal monitor function corresponding to the lowest error of interpolation from $W^{l,p}(\Omega)$ to $P_k(\Omega)$ is of the form

$$M_{K} \equiv \left(1 + \alpha^{-1} \langle u \rangle_{W^{l,p}(K)}\right)^{\frac{2q}{d+q(l-m)}} I, \quad \forall K \in \mathscr{T}, \qquad (4)$$

$$\rho_{K} \equiv \left(1 + \alpha^{-1} \langle u \rangle_{W^{l,p}(K)}\right)^{\frac{dq}{d+q(l-m)}}, \quad \forall K \in \mathscr{T}, \qquad (4)$$

$$\cdot |_{W^{m,p}(K)} = \left(\sum_{|\alpha|=m} \int_{K} |D^{\alpha}u|^{p} dx\right)^{\frac{1}{p}} \text{ is the semi-norm of the Sobolev space } W^{m,p}(K), \qquad (4)$$

and $\langle \cdot \rangle_{W^{m,p}(K)} \equiv (1/|K|)^{1/p} | \cdot |_{W^{m,p}(K)}$ is the scaled semi-norm.

where

Choose optimal monitor function with theoretic guarantee

≻Interpolation error:

Theorem 1 Suppose the error of approximating ρ satisfies

$$|\rho - \tilde{\rho}||_{L_{\frac{d}{d+q(l-m)}}(\Omega)} < \epsilon.$$

Also suppose $u \in W^{l+1,p}(\Omega)$, $q \leq p$ and the monitor function is chosen as in Proposition 1. Let Π_k be the interpolation operator from $W^{l,p}(K)$ to $P_k(K)$. For notational simplicity, we let

$$B(K) = \left(\sum_{K} |K| \langle u \rangle_{W^{l,p}(K)}^{\frac{dq}{d+q(l-m)}}\right)^{\frac{d+q(l-m)}{dq}}$$

(a) Choose α such that $\alpha \to 0$, if there exists a constant β such that $||D^l u(\mathbf{x})||_{l^p} \ge \beta > 0$ a.e. in Ω holds to ensure that M is positive definite, then

(b) Choose
$$\alpha \equiv |\Omega|^{-\frac{d+q(l-m)}{dq}}B(K)$$
, then
 $|u - \Pi_k u|_{W^{m,q}(\Omega)} \leq CN^{-\frac{(l-m)}{d}}B(K)(1 + \epsilon^{\frac{d+q(l-m)}{dq}})$

In both cases, as the number of cells N increases to infinity, the right-hand side of the inequality has the bound only relative to the semi-norm of u as

$$\lim_{N \to \infty} B(K) \le C |u|_{W^{l, \frac{dq}{d+q(l-m)}}(\Omega)}.$$

Our method

- Data-free Mesh Mover (DMM):
 - ➤ without optimal mesh data
 - Changes the mesh by moving existing nodes rather than adding or deleting nodes and edges

based on DMM

≻MM-PDE:

- > a two-branch architecture
- ➤ a learnable interpolation framework

Data-free Mesh Mover (DMM)

> We let the output of the model approximate the residual ψ

$$\nabla_x \psi = \nabla_x \phi - x = f(x) - x.$$

$$l = l_{equation} + \beta l_{bound} + \gamma l_{convex},$$

$$l_{equation} = \| |\Omega| \rho (\nabla_x \psi + x) det(H(\psi) + I) - \sigma \|,$$

$$l_{bound} = \| \nabla_x \psi(\partial \Omega) \|,$$

$$l_{convex} = \min\{0, 1 + \partial_{x_1}^2 \psi\}^2 + \min\{0, 1 + \partial_{x_2}^2 \psi\}^2.$$

 \succ Sampling strategy: sampling probability proportional to M.

Moving mesh based neural PDE solver (MM-PDE)

Effecient message passing:

> Between time steps: leverage the DMM for efficient node allocation.

> From the original to the moving mesh:

- (1) A learnable interpolation framework I: uses a residual cut network to convey information on original meshes and Itp_i to generate self-adapting interpolation weights. Pretrained on original data.
- (2) Two parallel branches that pass messages on the original and moving meshes respectively.

•
$$\mathcal{M}(u_t) = \mathcal{G}_1(u_t) + I(\mathcal{G}_2, \tilde{f}, u_t)$$

Experiment

Our method can generate and utilize moving meshes reasonably, and is superior in accuracy.

Table 1: Results of Burgers' equation and flow around a cylinder.

(a) Meshes from DMM on the Burgers' equation.

METRIC	ORIGINAL UNIFORM	MESH FROM
	MESH	DMM
std	0.1027	0.0469
range	0.7524	0.2061

(b) MM-PDE and baselines on the Burgers' equation.

ERROR	TIME(s)
1.04e-05	0.5192
3.10e-05	0.3078
1.19e-05	0.3298
1.26e-05	0.0027
1.18e-05	0.0159
1.61e-05	1.4598
	ERROR 1.04e-05 3.10e-05 1.19e-05 1.26e-05 1.18e-05 1.61e-05

(c) Meshes from DMM on flow around a cylinder.

	ORIGINAL	MESH
METRIC	UNIFORM	FROM
	MESH	DMM
std	0.0136	0.0094
range	0.1157	0.0733

(d) MM-PDE and baselines on flow around a cylinder.

ERROR
0.0846
0.2892
0.1548
-
-
0.4040
0.2844

Experiment

Table 7: Test on data of different resolutions on the Burgers' equatic	1. Table 8: Test on data of different resolutions on the flow around a cyli	inder
--	---	-------

Metric	Uniform 24×24 Mesh	24×24 Mesh from DMM
std	0.3315	0.1596
range	1.6879	0.7055
Metric	Uniform 96×96 Mesh	96×96 Mesh from DMM
std	0.0304	0.0136
range	0.3273	0.0858

Metric	Original 2521 Mesh	3286 Mesh from DMM
std	0.0112	0.0077
range	0.1111	0.0665
Metric	Original 2521 Mesh	1938 Mesh from DMM
std	0.0163	0.0111
range	0.1488	0.0833

>DMM' s ability to generate meshes of varying resolutions during inference.

 \succ The mesh tangling is rare.

of MM-PDE.
ROR
be-07
08e-06
52e-07
57e-07
24e-06

A well-defined and suitable moving mesh is crucial. And our introduced ways of message passing are effective.

Thank you!

If you have any question, please feel free to contact us. <u>hupeiyan18@mails.ucas.ac.cn</u> <u>yuwang5@microsoft.com</u>