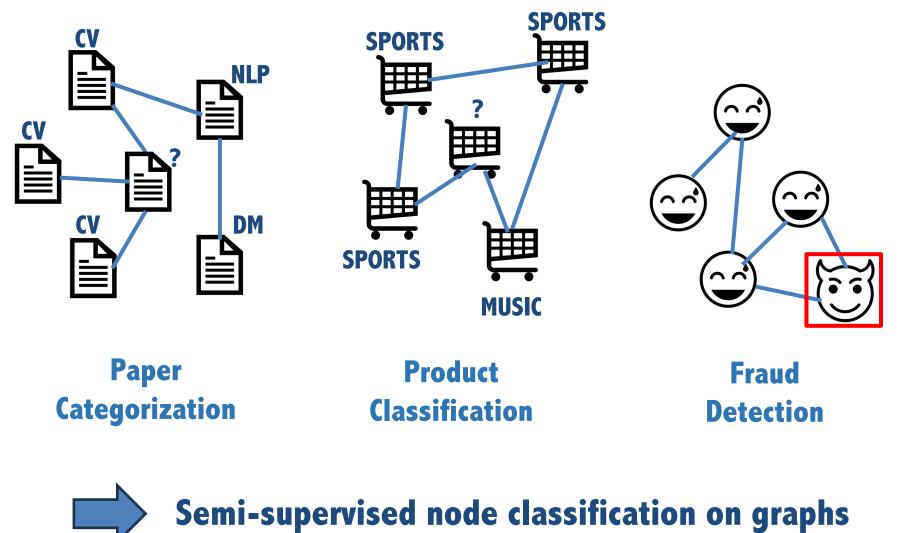
LABEL-FREE NODE CLASSIFICATION ON GRAPHS WITH LARGE LANGUAGE MODELS (LLMS)

Node Classification is a crucial task for graph



Semi-supervised node classification on graphs

Given a fixed training set

 \bigcirc Node features X

O Graph Structure A

 \bigcirc Ground truth labels y_L

> Predict the labels of the rest nodes

Semi-supervised node classification on graphs

Given a fixed training set

 \bigcirc Node features X

O Graph Structure A

 \bigcirc Ground truth labels y_L

Predict the labels of the rest nodes

Graph neural networks work well for this task with abundant ground truth labels

Two assumptions

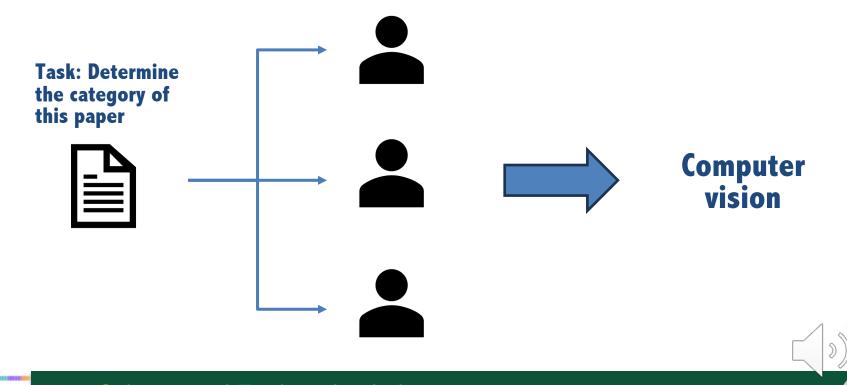
Overlook the data selection process

Ground truth labels y_L

Overlook the intricacy of (graph) data annotation

The old story: Human Annotation

Crowdsourcing platform (like Amazon MTurk) is one of the most popular ways to do annotations



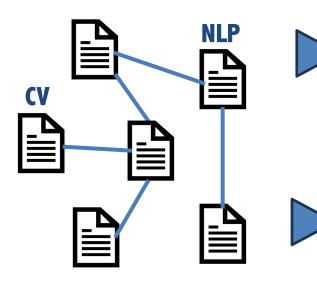
The old story: Human Annotation

Crowdsourcing platform (like Amazon MTurk) is one of the most popular ways to do annotations

How good is it?

Even for a simple task like annotating CIFAR-10 (image of daily objects), accuracy is only around 80%

Annotating graph data is challenging

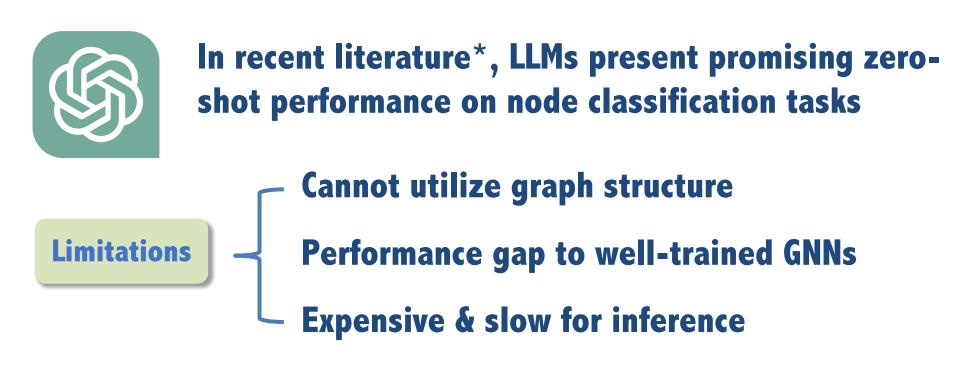


Due to the non-IID nature of the graph, human annotations tend to be biased and focus on a small group of nodes^{*}

Annotating some kinds of graph, like <u>OGB-Arxiv</u> (paper), requires related knowledge

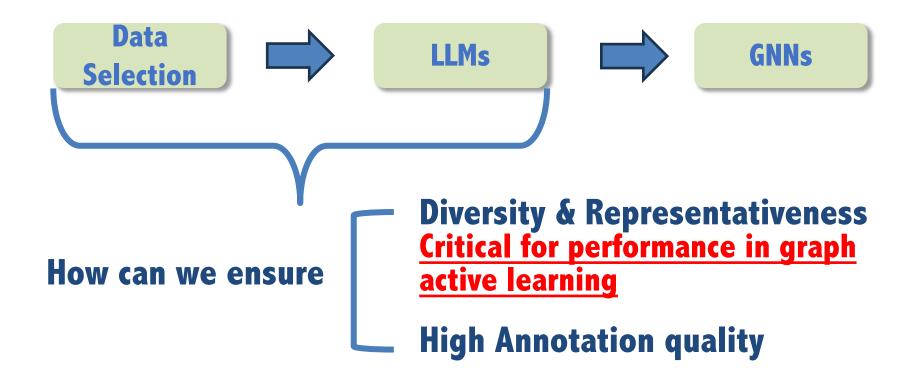
* Zhu, Qi, et al. "Shift-robust gnns: Overcoming the limitations of localized graph training data." Advances in Neural Informer on Processing Systems 34 (2021): 27965-27977.

LLMs as annotators for graphs?

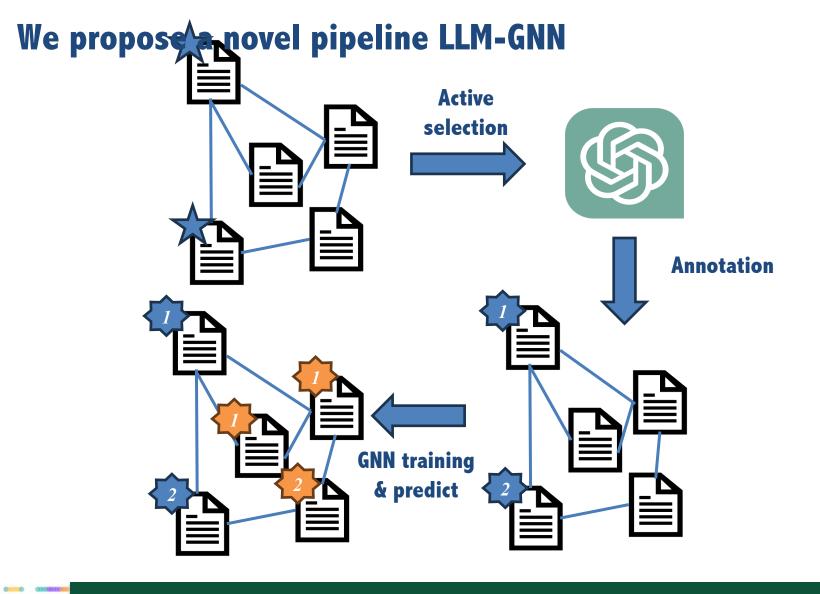


Using LLMs as annotators for GNNs seems a plausible way to harness the strength of both GNNs and LLMs!

Chen, Zhikai, et al. "Exploring the potential of large language models (Ilms) in learning on graphs." arXiv reprint arXiv:2307.03393 (2023).



Label-free node classification on graphs with LLMs



LLM-GNN supports flexible component design

The key part is how to consider the following two factors simultaneously (we show one possible implementation)

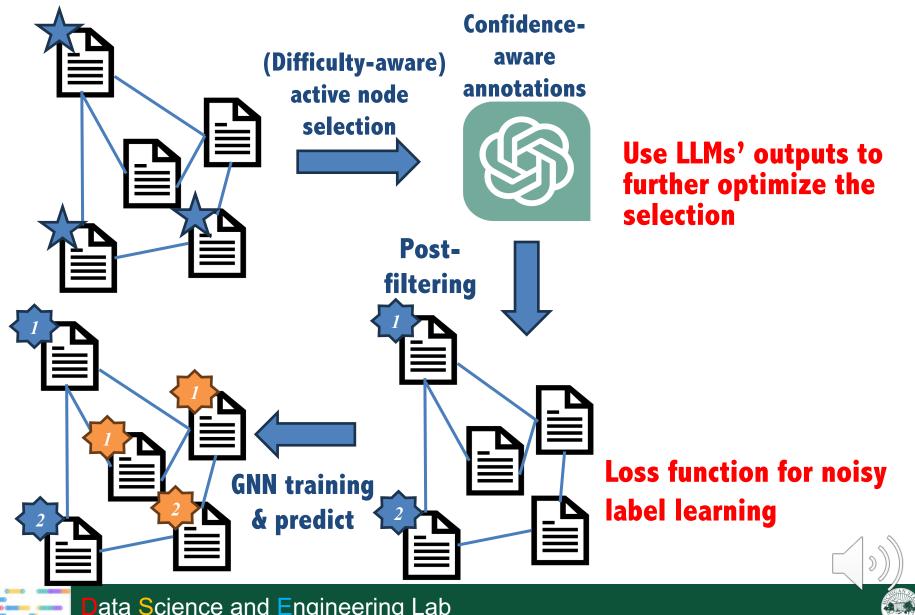
Diversity & Representativeness Can be addressed by graph active learning Annotation quality

We propose

- **1. Difficulty-aware active selection**
- 2. Confidence-aware prompt + Post filtering

Implementation

LLM-related information is not available, heuristic-based methods



In the selection stage, only feature and structure is available

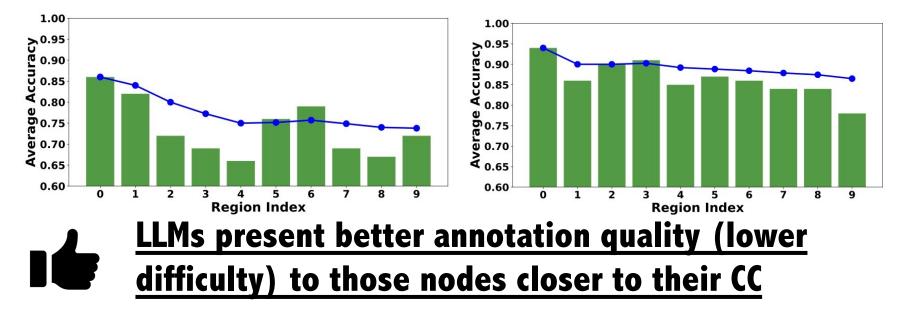
We induce the difficulty of annotation by the rule of thumb

The difficulty of annotation can be induced from density of nodes in the feature space

Distance of nodes to their closest clustering centers (CC)

Difficulty-aware active node selection

If we group and sort nodes with their distances to each one's CC



Intuition: Closer to CC indicating nodes with more "common" features, it may be easier for LLMs to annotate "common" nodes

Our methods: Combining difficulty-aware metrics with traditional graph active learning metrics

$$CDensity(v_i) = \frac{1}{1 + ||x_{v_i} - x_{CC_i}||}$$

Then, use ranking aggregation to combine metrics considering, more robust to scale differences

$$f_{act}(v_i) = \alpha_0 r_{f_{act}(v_i)} + \alpha_1 r_{CDensity(v_i)}$$

 $f_{act}(v_i)$

With proper hyper-parameters, we can get a good trade-off between diversity/representativeness and annotation difficulty

We may further use information generated by LLMs to filter the selected set of nodes

For example, the confidence of LLMs. If confidence is calibrated, the more confident, the higher the annotation quality

To generate calibrated confidence

1. Let LLMs output TopK results

2. Do k time queries and aggregate results

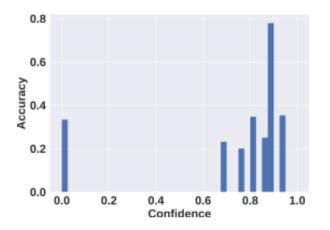
We sort nodes with their confidence and the higher confidence, the higher annotation quality, which shows the effectiveness of our hybrid strategy

Post filtering

For LLMs' output-based methods

Directly ask LLMs for their confidence

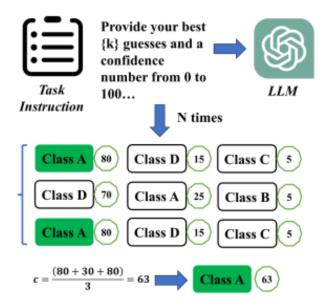
Powerful LLMs may generate high-quality confidence metrics
Can only be applied after conducting annotation

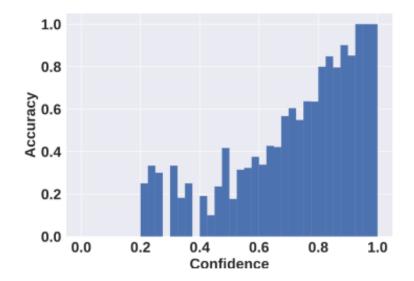


Directly prompt cannot generate accurate and diverse confidence!

Label-free node classification on graphs with LLMs

Confidence Elicitation can help!





Much better!

Two ways to use confidence:

- 1. Weighted loss for training
- 2. (optional) filter low-confidence nodes

Table 3: Comparison of label-free node classification methods. The cost is computed in dollars. The performance of methods with * are taken from <u>Li & Hooi (2023</u>). Notably, the time cost of LLMs is proportional to the expenses.

	Ogbn-arxiv		OGBN-PRODUCTS	
Methods	Acc	Cost	Acc	Cost
SES(*)	13.08	N/A	6.67	N/A
TAG-Z(*)	37.08	N/A	47.08	N/A
BART-large-MNLI	13.2	N/A	28.8	N/A
LLMs-as-Predictors	73.33	79	75.33	1572
LLM-GNN	66.32	0.63	74.91	0.74

Good empirical performance and pretty low costs!

