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Phylogenetic inference

Infer evolution history and relationship among a set of species
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Image credit: Zhang Cheng Neurips 2020 presentation “Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows”
https://neurips.cc/virtual/2020/public/poster_d96409bf894217686ba124d7356686c9.html
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Output: phylogenetic trees
e Leaves labeled by
studied species
e Two components:
o Treetopology z

o Branch lengths b

.

Image credit: Zhang Cheng Neurips 2020 presentation “Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows”
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Bayesian phylogenetic inference

Given observed sequences Y, infer the posterior distribution of weighted

phylogenetic trees (z,b) /
o _ Challenges: \
le?“hOOd Prior e nspecies -> topology
” A P() |: ) ’))P< <5 ])) space size (2n-5)!!
Plz,blY ) = :
2b
Posterior _ e Discrete topology +
Marginal continuous branch
A pre-defined evolution model is employed to \ lengths /

calculate likelihood and prior:

e Likelihood is calculated using Felsenstein's algorithm



Bayesian phylogenetic inference: prior works

MCMC based algorithms: X {
e Popular softwares \ *ﬂ
o MrBayes (Ronquist et al. 2012) { ¥
o RevBayes (Héhna et al. 2016) = ,
e Limited scalability to high dimensional { ) _ '{
distribution with multiple distanced modes. X) X (=< *

o nspecies ->(2n-5)!! tree topologies

5 {,ﬂ

Image credit: Zhang Cheng Neurips 2020 presentation “Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows”
https://neurips.cc/virtual/2020/public/poster_d96409bf894217686bal124d7356686c9.html



Bayesian phylogenetic inference: prior works

Variational Inference algorithms:

e VBPI (Zhang et al. 2018), VBPI-NF (Zhang 2020), VBPI-GNN (Zhang 2023)
o Limited tree topology sampling Space
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Bayesian phylogenetic inference: prior works

Variational Inference algorithms:

e VaiPhy (koptagel et al., 2022), GeoPhy (Mimori & Hamada, 2023)
o Underperformance in marginal log likelihood (MLL) estimation
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Generative flow network (GFlowNet)

KFLOWNet constructs object * Sk throughh

sequence of incremental actions based on a
stochastic policy.

Construction procedures modeled by MPD

- Initial state *°

- Terminal states .

- Trajectory from " to x represent a
construction sequence of x.

. 4
R(z): X %\]}.QnowNet

Given a reward function

learns a pol};'T' - ;"‘ ‘]';‘f ]‘ampling probability
r (“' )) & (”' )) Image credit: Emmanuel bengio blog post “Flow Network based Generative
Models for Non-Iterative Diverse Candidate Generation”

https://folinoid.com/w/gflownet/
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PhyloGFN Bayesian: objective and reward function

Objective: given observed sequences Y, learn a GFlowNet over
X ={(z,b)} such that: P, (z,b) = P(Y|z.b)

Reward function: R(z,b) = P(Y|z,b)P(b)
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o P(z,b|Y) = R(z,b)
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PhyloGFN Bayesian: objective and reward function

Objective: given observed sequences Y, learn a GFlowNet over
X ={(z,b)} such that: P, (z,b) = P(Y|z.b)

Reward function: R(z,b) = P(Y|z,b)P(b)
; P(z)
® P(z,blY)= R(z,!

(2,b]Y) i ))P(Y) Constant

© Pp(2,b) x R(2,b) = Pg(2,b) = P(Y|z,b)




PhyloGFN: phylogenetic trees construction
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PhyloGFN: phylogenetic trees construction

R = & = W = -0 Sequential construction:
.. e Initialize with the set of sequences as a
A forest of rooted trees
A ) :
&8 &
D@ | @
Al 2
A A
( \., 7 N
® @ ®| Yovw Yoo
| \i J
X A
% S \
&b 8)-(243y -l <€
) @ W
s ». \. 7




PhyloGFN: phylogenetic trees construction

R = & = ¥ = T Sequential construction:
: e Initialize with the set of sequences as a
A forest of rooted trees
A ' @ ‘ @ @ ' e lteratively joining pair of trees until a full
Qé}; @ > @ e tree is constructed.
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PhyloGFN: phylogenetic trees construction

o Sequential construction:
: e Initialize with the set of sequences as a
A forest of rooted trees
A ’ ® ‘ @ @ e lteratively joining pair of trees until a full
Qéé@ @|” 7 S I tree is constructed.
- @ e Remove root node at the end if we infer

A A g unrooted trees
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PhyloGFN: phylogenetic trees construction
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Sequential construction:
e Initialize with the set of sequences as a
forest of rooted trees
e lteratively joining pair of trees until a full
tree is constructed.
e Remove root node at the end if we infer
unrooted trees

Two steps action:
e Choose a pair of trees to join
e Generate branch lengths on new edges



PhyloGFN: Forward policy model

r

Transformer

Encoder

Feature
Encoding

YRLY0 S
d1mw abp3

Pairwise ]
combination Sample(i, 7)
Tree Topology MLP Edge lengths
sampling

SoftMax

Transformer based architecture
order-equivariant model

For an n trees state, generate probability
logits for (%) pairs of trees

Branch lengths modeling:
Discrete: multinomial distribution of

fixed bin size
Continuous: mixture of log-normal

distributions



PhyloGFN - Training

Trajectory balance loss with uniform backward policy (Malkin et al. 2022)

L1g(7) = [log

g
7o THE - Pelisis [LsiaH X~ n ]
o I—[,_()‘ 1*( i+1 | i ) PB(T | X) i l_[ ‘
R(x)Pg(7 | x) L1 |Pa(s;)]

Exploration strategies:
- Eps-Greedy
- Temperature annealing
- Replay buffer storing best trees seen



Evaluation - Dataset

Table S1: Statistics of the benchmark datasets from DS1 to DSS.

Dataset # Species # Sites  Reference

DS1 27 1949 Hedges et al. (1990)

DS2 29 2520 Garey et al. (1996)

DS3 36 1812 Yang & Yoder (2003)

DS4 41 1137 Henk et al. (2003)

DS5 50 378 Lakner et al. (2008)

DS6 50 1133 Zhang & Blackwell (2001)
DS7 59 1824 Yoder & Yang (2004)

DS8 64 1008 Rossman et al. (2001)




Evaluation - Bayesian inference

For bayesian inference, performance is evaluated with estimated marginal log
likelihood (MLL) lower bound

k
Z Pp(7il|zi, bi)R(zi, b;)
T PF(TI)

70— --—(zi,bi)

.....

Methods in comparison:

-  MCMC based algorithm: MrBayes SS ( Xie et al., 2011, Ronquist et al., 2012)
- Vlalgorithm

- VBPI-GNN (Zhang, 2023)

- VaiPhy (koptagel et al., 2022)

- GeoPhy (Mimori & Hamada, 2023)



Evaluation - Bayesian inference

MLL estimation

Table S4: Marginal log-likelihood estimation with different methods on real datasets DS1-DS8. PhyloGFN-
C(ontinuous) now outperforms ¢-CSMC, GeoPhy and PhyloGFN-B(ayesian) across all datasets and it is effec-
tively performing on par with the state of the arts MrBayes and VBPI-GNN.

MCMC ML-based / amortized, full tree space

Dataset MrBayes SS VBPI-GNN* ¢-CSMC GeoPhy PhyloGFN-B PhyloGFN-C

DS1 —7108.42 +0.18 -7108.41 =0.14 —7290.36 +7.23 ~7111.55 =0.07 —7108.95 +0.06 —7108.40 =0.04
DS2 -26367.57 +0.48 —=26367.73 <007 —30568.49 :31.3¢ —26368.44 :0.13  —26368.90:0.28 —26367.70 +0.04
DS3 —-33735.44 :05  =33735.12:0.09 —=33798.06:662 —33735.85 :0.12 -33735.6 +0.35 —=33735.11 =0.02
DS4 —13330.06 :0.54 —13329.94 -0.19 —13582.24 :35.08 —13337.42:1.32 —13331.83:0.19 —13329.91 =0.02
DS5 —8214.51 +0.28 —8214.64 +0.38 —8367.51 +8.87 —8233.89 16.63 —-8215.15 +0.2 —-8214.38 z0.16
DS6 —-6724.07 +0.86 —6724.37 0.4 —7013.83 £16.99 —6733.91 +0.57 —6730.68 +0.54 —-6724.17 +0.10
DS7 -37332.76 +2.42  —=37332.04 z0.12 -37350.77 =11.74 =37359.96 +1.14 —37331.89 z0.14
DS8 —8649.88 +1.75 —8650.65 +0.45 —-9209.18 +18.03 —-8660.48 +0.78 —-8654.76 +0.19 —8650.46 +0.05
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Evaluation - Bayesian inference running time

Running time:
e Reported results take 3-7 days
e Achieves similar performance with24% training data (<2 days for all

datasets)

Compare with VI methods on DS1

VBPI-GNN GeoPhy ¢-CSMC PhyloGFN Full PhyloGFN - 40% PhyloGFN - 24%

Running Time 16h10min 8h10min ~2h 62h40min 20h40min 15h40min

MLL -7108.41 (0.14) -7111.55 (0.07) -7290.36 (7.23) -7108.40 (0.04) -7108.39 (0.09) -7108.42 (0.05)



Evaluation - Bayesian inference running time

Running time:
e Reported results take 3-7 days
e Achieves similar performance with24% training data (<2 days for all

datasets)

Compare with VI methods on DS1

VBPI-GNN GeoPhy ¢-CSMC PhyloGFN Full| PhyloGFN - 40% PhyloGFN - 24%

Running Time 16h10min 8h10min ~2h 62h40min 20h40min 15h40min

MLL -7108.41 (0.14) -7111.55(0.07) -7290.36 (7.23) |-7108.40 (0.04)| -7108.39 (0.09) -7108.42 (0.05)




Evaluation - Bayesian inference running time

Running time:

Reported results take 3-7 days

Achieves similar performance with24% training data (<2 days for all

datasets)

Compare with VI methods on DS1

VBPI-GNN GeoPhy ¢-CSMC

Running Time 16h10min 8h10min ~2h

MLL

-7108.41 (0.14) -7111.55(0.07) -7290.36 (7.23)

PhyloGFN Full PhyloGFN - 40% PhyloGFN - 24%
62h40min 20h40min 15h40min

-7108.40 (0.04) -7108.39(0.09) -7108.42 (0.05)




Evaluation - Bayesian inference running time

Running time:
e Reported results take 3-7 days
e Achieves similar performance with24% training data (<2 days for all

datasets)

Compare with VI methods on DS1

Running Time

MLL

VBPI-GNN
16h10min

-7108.41 (0.14)

GeoPhy ¢-CSMC PhyloGFN Full PhyloGFN - 40%
8h10min ~2h 62h40min 20h40min

-7111.55 (0.07) -7290.36 (7.23) -7108.40 (0.04) -7108.39 (0.09)

PhyloGFN - 24%
15h40min

-7108.42 (0.05)




