PhyloGFN: Phylogenetic inference with generative flow networks

Ming Yang Zhou¹, Zichao Yan², Elliot Layne^{1,2}, Nikolay Malkin^{2,3}, Dinghuai Zhang^{2,3}, Moksh Jain^{2,3}, Mathieu Blanchette¹, Yoshua Bengio^{2,3,4}

¹McGill University ²Mila – Quebec AI Institute, ³Universite de Montreal, ⁴CIFAR

Phylogenetic inference

Infer evolution history and relationship among a set of species

Phylogenetic inference

Infer evolution history and relationship among a set of species

Phylogenetic inference

Infer evolution history and relationship among a set of species

Bayesian phylogenetic inference

Given observed sequences Y, infer the posterior distribution of weighted phylogenetic trees (z,b)

$$P(z,b|Y) = \frac{P(Y|z,b)P(z,b)}{P(Y)}$$
 Posterior

Marginal

A pre-defined evolution model is employed to calculate likelihood and prior:

• Likelihood is calculated using Felsenstein's algorithm

Challenges:

- n species -> topology space size (2n-5)!!
- Discrete topology + continuous branch lengths

Bayesian phylogenetic inference: prior works

MCMC based algorithms:

- Popular softwares
 - MrBayes (Ronquist et al. 2012)
 - RevBayes (Höhna et al. 2016)
- Limited scalability to high dimensional distribution with multiple distanced modes.
 - n species -> (2n-5)!! tree topologies

Bayesian phylogenetic inference: prior works

Variational Inference algorithms:

- VBPI (Zhang et al. 2018), VBPI-NF (Zhang 2020), VBPI-GNN (Zhang 2023)
 - Limited tree topology sampling Space

Bayesian phylogenetic inference: prior works

Variational Inference algorithms:

- VaiPhy (koptagel et al., 2022), GeoPhy (Mimori & Hamada, 2023)
 - Underperformance in marginal log likelihood (MLL) estimation

GFlowNet constructs object $^{x \in \mathcal{X}}$ through a sequence of incremental actions based on a stochastic policy.

Construction procedures modeled by MPD

- Initial state s_0
- Terminal states $\frac{\chi}{s_0}$ Trajectory from $\frac{1}{s_0}$ to x represent a construction sequence of x.

Given a reward function $R(x) : \mathcal{X} \to \mathbb{R}^+$ owNet learns a policy $P_{F}^{\top}(z,b) \propto R(z,b)$ ampling probability

GFlowNet constructs object $x \in \mathcal{X}$ through a sequence of incremental actions based on a stochastic policy.

Construction procedures modeled by MPD

- Initial state s_0
- Terminal states $\frac{\chi}{s_0}$ Trajectory from $\frac{1}{s_0}$ to x represent a construction sequence of x.

Given a reward function $R(x) : \mathcal{X} \to \mathbb{R}^+$ owNet learns a policy $P_{F}^{\top}(z,b) \propto R(z,b)$ ampling probability

GFlowNet constructs object $x \in \mathcal{X}$ through a sequence of incremental actions based on a stochastic policy.

Construction procedures modeled by MPD

- Initial state s_0
- Terminal states $\frac{\chi}{s_0}$ Trajectory from $\frac{1}{s_0}$ to x represent a construction sequence of x.

Given a reward function $R(x) : \mathcal{X} \to \mathbb{R}^+$ owNet learns a policy $P_{F}^{\top}(z,b) \propto R(z,b)$ ampling probability

GFlowNet constructs object $x \in \mathcal{X}$ through a sequence of incremental actions based on a stochastic policy.

Construction procedures modeled by MPD

- Initial state s_0
- Terminal states $\frac{\chi}{s_0}$ Trajectory from $\frac{1}{s_0}$ to x represent a construction sequence of x.

Given a reward function $R(x) : \mathcal{X} \to \mathbb{R}^+$ owNet learns a policy $P_{F}^{\top}(z,b) \propto R(z,b)$ ampling probability

Objective: given observed sequences Y, learn a GFlowNet over $\mathcal{X} = \{(z, b)\}$ such that: $P_F^{\top}(z, b) = P(Y|z, b)$

Reward function: R(z,b) = P(Y|z,b)P(b)

Objective: given observed sequences Y, learn a GFlowNet over $\mathcal{X} = \{(z, b)\}$ such that: $P_F^{\top}(z, b) = P(Y|z, b)$

Reward function: R(z,b) = P(Y|z,b)P(b)

•
$$P(z,b|Y) = R(z,b)\frac{P(z)}{P(Y)}$$

Objective: given observed sequences Y, learn a GFlowNet over $\mathcal{X} = \{(z, b)\}$ such that: $P_F^{\top}(z, b) = P(Y|z, b)$

• $P(z, b|Y) = R(z, b) \frac{P(y|z, b)P(b)}{P(Y)}$ Constant

Objective: given observed sequences Y, learn a GFlowNet over $\mathcal{X} = \{(z, b)\}$ such that: $P_F^{\top}(z, b) = P(Y|z, b)$

Reward function: R(z,b) = P(Y|z,b)P(b)• $P(z,b|Y) = R(z,b) \frac{P(z)}{P(Y)}$ Constant • $P_F^{\top}(z,b) \propto R(z,b) \implies P_F^{\top}(z,b) = P(Y|z,b)$

Sequential construction:

• Initialize with the set of sequences as a forest of rooted trees

Sequential construction:

- Initialize with the set of sequences as a forest of rooted trees
- Iteratively joining pair of trees until a full tree is constructed.

Sequential construction:

- Initialize with the set of sequences as a forest of rooted trees
- Iteratively joining pair of trees until a full tree is constructed.
- Remove root node at the end if we infer unrooted trees

Sequential construction:

- Initialize with the set of sequences as a forest of rooted trees
- Iteratively joining pair of trees until a full tree is constructed.
- Remove root node at the end if we infer unrooted trees

Two steps action:

- Choose a pair of trees to join
- Generate branch lengths on new edges

PhyloGFN: Forward policy model

Transformer based architecture

- order-equivariant model

For an n trees state, generate probability logits for $\binom{n}{2}$ pairs of trees

Branch lengths modeling:

- Discrete: multinomial distribution of fixed bin size
- Continuous: mixture of log-normal distributions

PhyloGFN - Training

Trajectory balance loss with uniform backward policy (Malkin et al. 2022)

$$\mathcal{L}_{\text{TB}}(\tau) = \left(\log \frac{Z_{\theta} \prod_{i=0}^{n-1} P_F(s_{i+1} \mid s_i; \theta)}{R(x) P_B(\tau \mid x)}\right)^2, \quad P_B(\tau \mid x) := \prod_{i=1}^n \frac{1}{|\text{Pa}(s_i)|}$$

Exploration strategies:

- Eps-Greedy
- Temperature annealing
- Replay buffer storing best trees seen

Evaluation - Dataset

Table S1: Statistics of the benchmark datasets from DS1 to DS8.

Dataset	# Species	# Sites	Reference
DS1	27	1949	Hedges et al. (1990)
DS2	29	2520	Garey et al. (1996)
DS3	36	1812	Yang & Yoder (2003)
DS4	41	1137	Henk et al. (2003)
DS5	50	378	Lakner et al. (2008)
DS6	50	1133	Zhang & Blackwell (2001)
DS7	59	1824	Yoder & Yang (2004)
DS8	64	1008	Rossman et al. (2001)

Evaluation - Bayesian inference

For bayesian inference, performance is evaluated with estimated marginal log likelihood (MLL) lower bound

$$\log P(\mathbf{Y}) \geq \mathbb{E}_{\tau_1, \dots, \tau_k \sim P_F} \log \left(P(z) \frac{1}{K} \sum_{\substack{\tau_i \\ \tau_i : s_0 \to \dots \to (z_i, b_i)}}^k \frac{P_B(\tau_i | z_i, b_i) R(z_i, b_i)}{P_F(\tau_i)} \right)$$

Methods in comparison:

- MCMC based algorithm: MrBayes SS (Xie et al., 2011, Ronquist et al., 2012)
- VI algorithm
 - VBPI-GNN (Zhang, 2023)
 - VaiPhy (koptagel et al., 2022)
 - GeoPhy (Mimori & Hamada, 2023)

Evaluation - Bayesian inference

MLL estimation

Table S4: Marginal log-likelihood estimation with different methods on real datasets DS1-DS8. PhyloGFN-C(ontinuous) now outperforms ϕ -CSMC, GeoPhy and PhyloGFN-B(ayesian) across all datasets and it is effectively performing on par with the state of the arts MrBayes and VBPI-GNN.

	MCMC		ML-based / amortized, full tree space				
Dataset	MrBayes SS	VBPI-GNN*	φ-CSMC	GeoPhy	PhyloGFN-B	PhyloGFN-C	
DS1	$-7108.42{\scriptstyle~\pm0.18}$	-7108.41 ± 0.14	-7290.36 ±7.23	-7111.55 ±0.07	-7108.95 ± 0.06	-7108.40 ± 0.04	
DS2	-26367.57 ± 0.48	-26367.73 ± 0.07	-30568.49 ± 31.34	-26368.44 ± 0.13	-26368.90 ± 0.28	-26367.70 ± 0.04	
DS3	-33735.44 ± 0.5	-33735.12 ± 0.09	-33798.06 ± 6.62	-33735.85 ± 0.12	-33735.6 ± 0.35	-33735.11 ± 0.02	
DS4	-13330.06 ± 0.54	-13329.94 ± 0.19	-13582.24 ± 35.08	-13337.42 ± 1.32	-13331.83 ± 0.19	-13329.91 ± 0.02	
DS5	-8214.51 ± 0.28	-8214.64 ± 0.38	-8367.51 ± 8.87	-8233.89 ± 6.63	-8215.15 ± 0.2	-8214.38 ± 0.16	
DS6	-6724.07 ± 0.86	-6724.37 ± 0.4	-7013.83 ± 16.99	-6733.91 ± 0.57	-6730.68 ± 0.54	-6724.17 ± 0.10	
DS7	-37332.76 ± 2.42	-37332.04 ± 0.12		-37350.77 ± 11.74	-37359.96 ± 1.14	-37331.89 ± 0.14	
DS8	-8649.88 ± 1.75	-8650.65 ± 0.45	$-9209.18{\scriptstyle~\pm18.03}$	$-8660.48{\scriptstyle~\pm0.78}$	$-8654.76{\scriptstyle~\pm0.19}$	$-8650.46{\scriptstyle~\pm0.05}$	

Evaluation - Bayesian inference

MLL estimation

Table S4: Marginal log-likelihood estimation with different methods on real datasets DS1-DS8. PhyloGFN-C(ontinuous) now outperforms ϕ -CSMC, GeoPhy and PhyloGFN-B(ayesian) across all datasets and it is effectively performing on par with the state of the arts MrBayes and VBPI-GNN.

-	MCMC		ML-based / amortized, full tree space			
Dataset	MrBayes SS	VBPI-GNN*	φ-CSMC	GeoPhy	PhyloGFN-B	PhyloGFN-C
DS1	$-7108.42{\scriptstyle~\pm0.18}$	-7108.41 ± 0.14	-7290.36 ±7.23	-7111.55 ±0.07	-7108.95 ± 0.06	-7108.40 ± 0.04
DS2	-26367.57 ± 0.48	-26367.73 ± 0.07	-30568.49 ± 31.34	-26368.44 ± 0.13	-26368.90 ± 0.28	-26367.70 ± 0.04
DS3	-33735.44 ± 0.5	-33735.12 ± 0.09	-33798.06 ± 6.62	-33735.85 ± 0.12	-33735.6 ± 0.35	$-33735.11 {\rm \pm 0.02}$
DS4	-13330.06 ± 0.54	-13329.94 ± 0.19	-13582.24 ± 35.08	-13337.42 ± 1.32	-13331.83 ± 0.19	-13329.91 ± 0.02
DS5	-8214.51 ± 0.28	-8214.64 ± 0.38	-8367.51 ± 8.87	-8233.89 ± 6.63	-8215.15 ± 0.2	$-8214.38{\scriptstyle~\pm0.16}$
DS6	-6724.07 ± 0.86	-6724.37 ± 0.4	-7013.83 ± 16.99	-6733.91 ± 0.57	-6730.68 ± 0.54	-6724.17 ± 0.10
DS7	-37332.76 ± 2.42	-37332.04 ± 0.12		-37350.77 ± 11.74	-37359.96 ± 1.14	$-37331.89{\scriptstyle~\pm0.14}$
DS8	-8649.88 ± 1.75	-8650.65 ± 0.45	$-9209.18{\scriptstyle~\pm18.03}$	-8660.48 ± 0.78	$-8654.76{\scriptstyle~\pm0.19}$	$-8650.46{\scriptstyle~\pm0.05}$

Running time:

- Reported results take 3-7 days
- Achieves similar performance with24% training data (<2 days for all datasets)

	VBPI-GNN	GeoPhy	ϕ -CSMC	PhyloGFN Full	PhyloGFN - 40%	PhyloGFN - 24%
Running Time	16h10min	8h10min	~ 2h	62h40min	20h40min	15h40min
MLL	-7108.41 (0.14)	-7111.55 (0.07)	-7290.36 (7.23)	-7108.40 (0.04)	-7108.39 (0.09)	-7108.42 (0.05)

Running time:

- Reported results take 3-7 days
- Achieves similar performance with24% training data (<2 days for all datasets)

	VBPI-GNN	GeoPhy	ϕ -CSMC	PhyloGFN Full	PhyloGFN - 40%	PhyloGFN - 24%
Running Time	16h10min	8h10min	~ 2h	62h40min	20h40min	15h40min
MLL	-7108.41 (0.14)	-7111.55 (0.07)	-7290.36 (7.23)	-7108.40 (0.04)	-7108.39 (0.09)	-7108.42 (0.05)

Running time:

- Reported results take 3-7 days
- Achieves similar performance with24% training data (<2 days for all datasets)

	VBPI-GNN	GeoPhy	ϕ -CSMC	PhyloGFN Full	PhyloGFN - 40%	PhyloGFN - 24%
Running Time	16h10min	8h10min	~ 2h	62h40min	20h40min	15h40min
MLL	-7108.41 (0.14)	-7111.55 (0.07)	-7290.36 (7.23)	-7108.40 (0.04)	-7108.39 (0.09)	-7108.42 (0.05)

Running time:

- Reported results take 3-7 days
- Achieves similar performance with24% training data (<2 days for all datasets)

	VBPI-GNN	GeoPhy	$\phi ext{-csmc}$	PhyloGFN Full	PhyloGFN - 40%	PhyloGFN - 24%
Running Time	16h10min	8h10min	~ 2h	62h40min	20h40min	15h40min
MLL	-7108.41 (0.14)	-7111.55 (0.07)	-7290.36 (7.23)	-7108.40 (0.04)	-7108.39 (0.09)	-7108.42 (0.05)