

Path Choice Matters for Clear Attributions in Path Methods

Borui Zhang, Wenzhao Zheng, Jie Zhou, Jiwen Lu* Department of Automation, Tsinghua University, China ICLR 2024

Interpretable methods need completeness and clarity

Completeness: Remove the uncertainty of the interpretation itself!
Clarity: Precise definition of "contribution / significance"!

Interpretable methods need completeness and clarity

Lack completeness: e.g., CAM、Grad-CAM

Lack clarity: e.g., Integrated Gradients

(1) Preliminary: path methods

Line integral from source x^{S} to target x^{T} Path methods O S1,S2 $\Delta y = y^T - y^0 = \int_{\gamma} \nabla f(\boldsymbol{x})^T \, \mathrm{d}\boldsymbol{x}$ **IG** (2017) Line integral Straight line path in $= \int_{\alpha=0}^{1} \frac{\partial f(\boldsymbol{\gamma}(\alpha))}{\partial \boldsymbol{\gamma}(\alpha)} \frac{\partial \boldsymbol{\gamma}(\alpha)}{\partial \alpha} \, \mathrm{d}\alpha$ expansion spatial domain **BluriG** (2020) Straight line path in **Definition of** $a_i \triangleq \int_{-\infty}^{1} \frac{\partial f(\boldsymbol{\gamma}(\alpha))}{\partial \gamma_i(\alpha)} \frac{\partial \gamma_i(\alpha)}{\partial \alpha} \,\mathrm{d}\alpha.$ **frequency** domain attributions GuidedIG (2021) **Different path functions** γ lead to **ambiguity Adjust paths based Completeness** $\Delta y = \int_{\alpha=0}^{1} \sum_{i=1}^{d} \frac{\partial f(\boldsymbol{\gamma}(\alpha))}{\partial \gamma_i(\alpha)} \frac{\partial \gamma_i(\alpha)}{\partial \alpha} d\alpha = \sum_{i=1}^{d} a_i$ on the gradient in attribution results! fluctuation

(2) Path selection criterion

Path selection criterion

Definition 1 (Concentration Principle)

A path function γ is said to satisfy **Concentration Principle** if attribution *a* achieves the max $Var(a) = \frac{1}{d} \sum_{i=1}^{d} (a_i - \overline{a})^2$

 $\square Intuitive understanding: the isotropic field centered on the averaged point \mathcal{P}$

Concrete examples

Example 1:

For a 3-feature case, this principle prefers
(0.7, 0.2, 0.1) to (0.4, 0.3, 0.3)

Example 2:

For visual data, this principle leads to sparse and aesthetic attributions

(3) Approximate solution derivation

Data distribution assumption

Hard to solve: $\gamma^* = arg \min_{\gamma \in \Gamma} \frac{1}{d} \sum_{i=1}^d (a_i(\gamma) - \overline{a}(\gamma))^2$

Assumption 1 (Allocation as Brownian motion) We assume the additive process $\{u_t, t \ge 0\}$ as the Brownian motion and $u_t \sim \mathcal{N}(0, \sigma t)$ if without any constraint condition

NOT directly assumed the Brownian motion under the condition $\sum a_i = C$

The key is to solve the joint conditional distribution $P(a_1, a_2, \dots, a_d | \sum_i a_i = C)$

Propositions

Proposition 1 (Joint conditional distribution)

By Brownian motion assumption, the conditional joint distribution $P(\tilde{a}|u_d = C)$ is a multivariate Gaussian distribution as: $P(\tilde{a}|C) = \frac{1}{(2\pi)^{\frac{d-1}{2}}\sqrt{|\Sigma|}} \exp\left\{-\frac{1}{2}\left\|\tilde{a} - \frac{C}{d}\mathbf{1}\right\|_{\Sigma^{-1}}^2\right\} \text{ where } \Sigma = \frac{\sigma}{d} \begin{bmatrix} d-1 & -1 & \cdots & -1 \\ -1 & d-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & d-1 \end{bmatrix} \in \mathbb{R}^{(d-1)\times(d-1)}.$

D Explanation: $(u_k = \sum_{i=1}^k a_i)$

□ For any i,j, conditional covariance $Cov(a_i, a_j | u_d = C) = -\sigma/d$ □ For any i, conditional expectation $E(u_k | u_d = C) = kC/d$, which indicates that random paths tend to linear perturbations

(3) Approximate solution derivation

Data distribution assumption

Hard to solve: $\gamma^* = arg \min_{\gamma \in \Gamma} \frac{1}{d} \sum_{i=1}^d (a_i(\gamma) - \overline{a}(\gamma))^2$

Assumption 1 (Allocation as Brownian motion) We assume the additive process $\{u_t, t \ge 0\}$ as the Brownian motion and $u_t \sim \mathcal{N}(0, \sigma t)$ if without any constraint condition

NOT directly assumed the Brownian motion under the condition $\sum a_i = C$

The key is to solve the joint conditional distribution $P(a_1, a_2, \dots, a_d | \sum_i a_i = C)$

Propositions

Proposition 2 (Asymptotic property)

The covariance matrix of the multivariate Gaussian distribution tends to σI as $d \to \infty$ $\hat{P}(\tilde{a}|C) = \frac{1}{(2\pi)^{\frac{d-1}{2}}\sqrt{|\Sigma|}} \exp\left(-\frac{D_{ap}^2}{2\sigma}\right)$

Explanation:

□ Probability approximation: The original distribution is approximated by P(ã|C) = P(ã|C) e^{a²/(2σ)} with tolerable error
□ Asymptotically independence: The conditional covariance Cov(a_i, a_j |u_d = C) tends to 0

Conclusion:

Employ the greedy optimization method to assign attributions to pixels in turn!

(4) Greedy optimization algorithm

Input Space Score Landscape Target x_{K-1} x_{K-1}

SAMP (analogous for deletion) as follows:

Complete algorithm flow

$$(\mathbf{d}\boldsymbol{x}^{k})_{i} = \begin{cases} x_{i}^{E} - x_{i}^{k}, & i \in \mathbb{M}_{k} \\ 0, & \text{Otherwise} \end{cases}$$
(11)
where $\mathbb{M}_{k} = \{i \mid i \in top_{s}\{\alpha_{j}\}\},$
and $\alpha_{j} = \begin{cases} (\nabla f(\boldsymbol{x}^{k}))_{j}(x_{j}^{E} - x_{j}^{k}), & \text{if } x_{j}^{E} \neq x_{j}^{k} \\ -\infty, & \text{Otherwise} \end{cases}$

Initialization: model f, data point x_s , baseline point x_0 (1) $x_i \leftarrow x_s$, the target direction is $\Delta x = x_0 - x_s$ (2) Forward propagation: compute prediction scores $y_i = f(x_i)$ (3) Backward propagation: compute gradients $g_i = \nabla_{x_i} f(x_i)$ (4) Find the optimal projection gradient $\arg \max |m_i(\Delta x)^T g_i|$ mi along Δx , where m_i indicates the mask (5) Update $x_i \leftarrow x_i + m_i(\Delta x)$, return step (2), until the end **Output:** decomposition path $\Delta y = \sum_i g_i m_i(\Delta) \rightarrow \int_L \nabla f(x) dx$

Qualitative visualization results

Verification of Concentration Principle

U Visualization comparison

Figure 4. Visualization on MNIST, CIFAR-10, and ImageNet for comparison with other mainstream interpretation methods.

Motivation -> Method -> Experiment -> Conclusion

Quantitative result analysis

Deletion/Insertion metrics

Table 1: Deletion/Insertion metrics on MNIST, CIFAR-10, and ImageNet compared with other interpretation methods.

	MNIST		CIFAR-10		ImageNet	
Method	Deletion ↓	Insertion ↑	Deletion ↓	Insertion ↑	Deletion↓	Insertion ↑
LRP [4]	-0.003 (±0.133)	$0.808 (\pm 0.102)$	$-0.257(\pm 0.485)$	$1.452 (\pm 0.373)$	$0.210 \ (\pm 0.133)$	$0.575 (\pm 0.150)$
CAM [40]	$0.221 (\pm 0.154)$	$0.715 (\pm 0.107)$	$0.314(\pm 0.307)$	$0.863 (\pm 0.233)$	$0.313 (\pm 0.129)$	$0.897 (\pm 0.130)$
LIME [25]	0.282 (±0.139)	$0.597 (\pm 0.093)$	$0.479 (\pm 0.287)$	$0.722 (\pm 0.235)$	$0.312 \ (\pm 0.128)$	$0.898 (\pm 0.140)$
Grad-CAM [26]	$0.221 (\pm 0.154)$	$0.715 (\pm 0.107)$	$0.314 (\pm 0.307)$	$0.863 (\pm 0.233)$	$0.313 (\pm 0.129)$	$0.897 (\pm 0.130)$
IG [33]	-0.038 (±0.142)	$0.795 (\pm 0.105)$	$-0.372 (\pm 0.535)$	$1.452 \ (\pm 0.400)$	$0.197(\pm 0.129)$	$0.725 (\pm 0.199)$
SmoothGrads [31]	0.003 (±0.127)	$0.547 (\pm 0.110)$	0.777 (±0.551)	$0.517 (\pm 0.283)$	$0.300(\pm 0.127)$	$0.605 (\pm 0.171)$
DeepLIFT [28]	-0.025 (±0.135)	$0.791 \ (\pm 0.105)$	$-0.300(\pm 0.513)$	1.443 (±0.383)	$0.216 \ (\pm 0.122)$	$0.688 (\pm 0.184)$
Grad-CAM++ [7]	$0.149 (\pm 0.102)$	$0.776 \ (\pm 0.065)$	0.386 (±0.346)	$0.795 (\pm 0.203)$	$0.319(\pm 0.132)$	$0.890 (\pm 0.128)$
RISE [24]	$0.059 (\pm 0.111)$	$0.651 (\pm 0.123)$	0.149 (±0.349)	$0.904 (\pm 0.272)$	$0.282 (\pm 0.131)$	$0.849 (\pm 0.151)$
XRAI [14]	$0.120 \ (\pm 0.117)$	$0.754(\pm 0.097)$	0.248 (±0.330)	$0.910 \ (\pm 0.208)$	$0.346 (\pm 0.161)$	$0.865 (\pm 0.141)$
Blur IG [36]	$0.021 (\pm 0.021)$	$0.804 (\pm 0.170)$	$-0.107 (\pm 0.387)$	1.407 (±0.464)	$0.261 (\pm 0.144)$	$0.712 (\pm 0.223)$
Guided IG [15]	$-0.041 (\pm 0.135)$	$0.762\;(\pm 0.100)$	$-0.276(\pm 0.469)$	$1.209\;(\pm 0.349)$	$0.167\;(\pm 0.126)$	$0.699\;(\pm 0.210)$
SAMP (ours)	-0.093 (±0.142)	1.074 (±0.176)	-0.733 (±0.671)	1.458 (±0.399)	0.154 (±0.118)	0.984 (±0.195)
SAMP++ (ours)	$-0.137 (\pm 0.151)$	$1.050 (\pm 0.179)$	-0.899 (±0.724)	$1.514\;(\pm 0.425)$	$0.145 (\pm 0.116)$	$1.116~(\pm 0.241)$

Significantly outperformed all comparison methods on Deletion/Insertion

Sensitivity-N check

Figure 5. Sensitivity-N check for the infinitesimal constraint.

 The infinitesimal constrant ensures the completeness of attributions

TAKE-HOME MESSAGE

- Core thoughts: Axiomatic design for unique Path selection for clarity and approximation assumption for fast computation
- Concentration Principle: This Heuristic searching target makes attributions sparse and aesthetic
- Greedy algorithm: Greedy algorithm is used to solve the nearly-optimal solution under Brownian motion assumption
- Limitation: The algorithm cannot guarantee strict global optimal, and attributions depend on properties of models!

Thanks

