SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation

Spotlight

Chongyu Fan^{1,*}, Jiancheng Liu^{1,*}, Yihua Zhang¹, Eric Wong², Dennis Wei³, Sijia Liu^{1,3}

¹Michigan State University, ²University of Pennsylvania, ²IBM Research *Equal contribution

{fanchong2, liujia45}@msu.edu

Code

What is Machine Unlearning (MU)?

- Eliminate undesirable data influence (e.g., sensitive or illegal information) and associated model capabilities, while maintaining utility.
- Applications: Removing sensitive data information, copyright protection, harmful content degeneration, etc.

Generation examples by Stable Diffusion pre/after applying MU (SalUn).

Forgetting Objective: (Left) Concept "Nudity"; (Mid) Object "Dog"; (Right) Style "Sketch".

Why and Why Not Retrain?

- Retrain model from scratch over retaining dataset (after removing data to be unlearned) is considered as an **optimal** MU method.
- Limitation: Lacks training efficiency, particularly for large-scale deep models

How to Define the "GOOD" in MU?

Computation Efficiency

Generalization Fidelity

Can unlearned models still generalize?

Unlearning Efficacy

Is the impact of forgetting data points truly removed?

Limitations of Current MU Methods

- Existing MU methods lack generality in harder tasks. •
 - Large forgetting ratio \bullet
 - Image generation tasks •
- Hard to strike the balancing point between unlearning and generalization. •

MICHIGAN STATE UNIVERSITY

- Tend to either **over-forget** (e.g., GA , RL) \bullet
- Or under-forget (e.g., FT , l1-sparse) •

	Original	Retrain	GA	RL	FT
Forgetting class: "airplane"	**				¥ ¥

- Use the gradient of the forgetting loss with respect to the model weights θ under the forgetting dataset.
- Apply a hard thresholding to obtain the weight saliency mask.
- By fixing the low-saliency parameters, achieving an accurate unlearning.

$$\mathbf{m}_{\mathrm{S}} = \mathbb{1} \left(\left| \nabla_{\boldsymbol{\theta}} \ell_{\mathrm{f}}(\boldsymbol{\theta}; \mathcal{D}_{\mathrm{f}}) \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{\mathrm{o}}} \right| \geq \gamma \right) \\ \boldsymbol{\theta}_{\mathrm{u}} = \underbrace{\mathbf{m}_{\mathrm{S}} \odot \left(\Delta \boldsymbol{\theta} + \boldsymbol{\theta}_{\mathrm{o}} \right)}_{\text{salient weights}} + \underbrace{\left(\mathbf{1} - \mathbf{m}_{\mathrm{S}} \right) \odot \boldsymbol{\theta}_{\mathrm{o}}}_{\text{original weights}}$$

- Integrate weight saliency with random labeling (RL) provides a promising MU solution both in image classification and image generation.
- Classification:
 - SalUn assigns a random label to each forgetting data point and then fine-tunes the salient weights on the randomly relabeled dataset.

$$\underset{\Delta \boldsymbol{\theta}}{\text{minimize }} L_{\text{Salun}}^{(1)}(\boldsymbol{\theta}_{u}) := \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{D}_{f}, y' \neq y} \left[\ell_{\text{CE}}(\boldsymbol{\theta}_{u}; \mathbf{x}, y') \right] + \alpha \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{D}_{r}} \left[\ell_{\text{CE}}(\boldsymbol{\theta}_{u}; \mathbf{x}, y) \right]$$

- Integrate weight saliency with random labeling (RL) provides a promising MU solution both in image classification and image generation.
- Generation:
 - SalUn associates each image x in forgetting concept c with a misaligned concept c'.

$$\underset{\Delta\boldsymbol{\theta}}{\text{minimize}} \ L^{(2)}_{\text{Salun}}(\boldsymbol{\theta}_{u}) := \mathbb{E}_{(\mathbf{x},c)\sim\mathcal{D}_{f},t,\epsilon\sim\mathcal{N}(0,1),c'\neq c} \left[\|\epsilon_{\boldsymbol{\theta}_{u}}(\mathbf{x}_{t}|c') - \epsilon_{\boldsymbol{\theta}_{u}}(\mathbf{x}_{t}|c)\|_{2}^{2} \right] + \beta\ell_{\text{MSE}}(\boldsymbol{\theta}_{u};\mathcal{D}_{r})$$

SalUn in Image Classification

• SalUn demonstrates consistent forgetting performance across different forgetting data amounts.

MICHIGAN STATE UNIVERSITY

SalUn in Image Generation

• Class-wise forgetting performance in image generation

Example of forgetting "Church" class.

Eanget Class	SalUn		ESD		FMN	
Forget. Class	UA (†)	FID (\downarrow)	UA (†)	FID (\downarrow)	UA (†)	FID (\downarrow)
Tench	100.00	2.53	99.40	1.22	42.40	1.63
English Springer	100.00	0.79	100.00	1.02	27.20	1.75
Cassette Player	99.80	0.91	100.00	1.84	93.80	0.80
Chain Saw	100.00	1.58	96.80	1.48	48.40	0.94
Church	99.60	0.90	98.60	1.91	23.80	1.32
French Horn	100.00	0.94	99.80	1.08	45.00	0.99
Garbage Truck	100.00	0.91	100.00	2.71	41.40	0.92
Gas Pump	100.00	1.05	100.00	1.99	53.60	1.30
Golf Ball	98.80	1.45	99.60	0.80	15.40	1.05
Parachute	100.00	1.16	99.80	0.91	34.40	2.33
Average	99.82	1.22	99.40	1.49	42.54	1.30

SalUn in Image Generation

• Concept forgetting performance in image generation

Example of forgetting "Nudity" concept.

Unlearn

"Nudity

Summary

- Weight saliency helps Machine Unlearning
- Limitations
 - Limited scope
 - Fine-grained masking methods

