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What is Machine Unlearning (MU)?

Eliminate undesirable data
influence (e.g., sensitive or
illegal information) and
associated model capabilities,

while maintaining utility. S 4
,...q Onglnal SD Y -

Applications: Removing Original SD Orlglnal SD S
sensitive data information, Generation examples by Stable Diffusion pre/after applying MU (SalUn).
copyright protection, harmful

content degeneration, etc.

Forgetting Objective: (Left) Concept "Nudity"; (Mid) Object "Dog"; (Right) Style "Sketch".
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Why and Why Not Retrain?

e e

Retrain model from scratch NG 0 B 2SR
over retaining dataset . S ey ) @\ |
(after removing data to be (SRS - e &”/
unlearned) is considered as smomtinaty R AE el —
an optimal MU method. Pal %

Limitation: Lacks training (_ Retrain :> %
efficiency, particularly for

large-scale deep models Random initialization Retrained model
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How to Define the “GOOD” in MU?

Computation i i
pl.’ . I Unlearning Efficacy
Efficiency
Is the impact of forgetting

L. data points truly removed?
Generalization P y

Fidelity

Can unlearned models
still generalize?
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Limitations of Current MU Methods
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* Existing MU methods lack generality in harder tasks.
* Large forgetting ratio
* Image generation tasks
Hard to strike the balancing point between unlearning and generalization.
* Tend to either over-forget (e.g., GA, RL)

* Orunder-forget (e.g., FT, |1-sparse)
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SalUn: Weight Saliency Is the Key to MU

Diffusion Model Unlearned DM

X
==

Unlearn
“Nudity”

Condition Condition
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SalUn: Weight Saliency Is the Key to MU

* Use the gradient of the forgetting loss with respect to the
model weights # under the forgetting dataset.

* Apply a hard thresholding to obtain the weight saliency mask.

* By fixing the low-saliency parameters, achieving an accurate
unlearning.

ms =1 (|Vols (6;D0) Jg_p, | 2 )
0. :mSQ(A9+90)+(1_mS)®90

vy

salient weights original weights
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SalUn: Weight Saliency Is the Key to MU

* Integrate weight saliency with random labeling (RL) provides a promising
MU solution both in image classification and image generation.

e C(lassification:
* SalUn assigns a random label to each forgetting data point and then
fine-tunes the salient weights on the randomly relabeled dataset.

minimize LS 5 (8u) = Exyyapy 2y [Lon (00 %,y)] + 0B (x )b, [lor(8uix, 1)
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SalUn: Weight Saliency Is the Key to MU

* Integrate weight saliency with random labeling (RL) provides a promising
MU solution both in image classification and image generation.

e Generation:

* SalUn associates each image x in forgetting concept c with a
misaligned concept c'.

minimize L2, (0u) = Eeepnprenn(o.n).er2c [0, (Xele) = €o, (xe|e) 3] + Blarse(8us Dr)
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SalUn in Image Classification

SalUn demonstrates consistent forgetting performance across
different forgetting data amounts.

10 B |FT-Retrain| I [U-Retrain|

EE |RL-Retrain| |€1-sparse-Retrain|
B |GA-Retrain| |SalUn-Retrain|
& 8 :
é TS 7.15
o 6.79 6.65
]
&) 6 536 5.72
£
S 4 3732 406
2
2.65
c: 2.26
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1.15
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Forgetting Data Amount
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SalUn in Image Generation

* Class-wise forgetting performance in image generation

Forget. Class salln ESD EMN

) UA () | FID() | UA(D) | FID(}) | UA(1) | FID(])

Wiileari Tench 10000 253 | 9940 122 | 4240  1.63
p ; English Springer | 100.00  0.79 | 10000  1.02 | 2720 175
Church Cassctte Player | 99.80 091 | 100.00  1.84 | 93.80  0.80
Chain Saw 10000 158 | 9680 148 | 4840  0.94

Church 99.60 090 | 9860 191 2380 132

FrenchHorn | 100,00 094 | 9980 108 | 4500 099

Garbage Truck | 100.00 091 | 100.00  2.71 4140 092

Gas Pump 10000 105 | 10000 199 | 5360  1.30

Golf Ball 9880 145 | 99.60  0.80 | 1540  1.05

. Parachute 10000 116 | 99.80 091 | 3440 233

Example of forgetting "Church" class. Average | 99.82 122 | 9940 149 | 4254 130
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SalUn in Image Generation

* Concept forgetting performance in image generation

=== SalUn
Buttocks weeeeeeees ®e% ESD
FMN
Feet peeeeeeeen SD V1.4
Unlearn
"Nudity"

Bel ]y KX XX XXX X XXX XXX
Armpits (XXX R XXX XXX XX XXX
Male genitalia RARAX XXX XXX XA

Male breast [RARARAAARARRARRARX A

I \J"L'-la,'?'

Example of forgetting "Nudity" concept.

Female genitalia s

F emale br (MRS AAAARRAARR AN

0 2 16 64 256
# of generated harmful images
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Summary

* Weight saliency helps Machine Unlearning

* Limitations
* Limited scope
* Fine-grained masking methods
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