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The representation capability of the LIF & LM-H model

(a) LIF Neuron (b) Learnable Multi-hierarchical Neuron

Time-step

Figure 1: The structural description for vanilla LIF and LM-H models.

 Representation defects of the LIF model

« The gradient vanishing & exploding problem in deep residual architectures.
[T, H'(s"1t] — 0 — 0or [[;-, H' (s 1[t] — 0') = +o0
 The inability to differentiate the current response through extracting past information.

® NELVF 2024/4/20 2



The representation capability of the LIF & LM-H model
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transform the LM-H model
into a single-layer form
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historical representation

uh: historical information

pt: historical membrane potential
AL: current membrane potential
AL: input current & the calculation
of residual architecture

1, Ny H (A st 1[t] — 6

Conclusion: the LM-H model
can overcome the representation
defects of vanilla LIF model, the
LIF model is actually a special
case of the LM-H model.
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A progressive STBP training for the LM-H model

(a) Learning Function for
Membrane Parameter
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(b) From Initial State (IF/LIF Neuron) to
Optimal State (LM-H Neuron)

Figure 3: Progressive STBP Training framework for the LM-H Neuron.

* Set the LM-H model as vanilla LIF model under the initial state

« Dynamically optimize the membrane-related parameters during the learning
process to achieve more reasonable extraction of historical and current
Information
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Efficient training based on the LM-H model
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Figure 4: Efficient Training framework for LM-H Neuron.
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Experiments: STBP training

Table 1: Comparison with previous SOTA works. * denotes an improved version of the network

structure.
Dataset Method Architecture Time-steps Accuracy(%)

STBP-tdBN (Zheng et al.,, 2021)  ResNet-19 4 92.92

Dspike (Li et al., 2021) ResNet-18 4 93.66

TET (Deng et al., 2022 ResNet-19 4 94.44
CIFAR-10 ResNet-18 4,6 94.67, 94.88
GLIF (Yao et al., 2022) ResNet-19 46 94.85. 95.03

Ours ResNet-18 4 95.62

ResNet-19 4 96.36

Dspike (Liet al., 2021) ResNet-18 4 73.35

TET (Deng et al., 2022 ResNet-19 4 74.47
SR, ResNet-18 4,6 76.42,77.28
CIEAR-100 GLIF (Yao et al., 2022 ResNet-19 46 77.05. 77.35
TEBN (Duan et al., 2022) ResNet-19* 4,6 78.71,78.76

ResNet-18 4 78.58

Ours ResNet-19 4 80.31

ResNet-19” 4 81.65

DCT (Garg et al., 2020) VGG-13 125 56.90

Online-LTL (Yang et al., 2022 VGG-13 16 54.82

ImaceNet-200 Offline-LTL (Yang et al., 2022) VGG-13 16 55.37
& ASGL (Wang et al., 2023) VGG-13 4,8 56.57, 56.81

Ours VGG-13 4 59.93

Ours (radical version) VGG-13 4 60.37

STBP-tdBN (Zheng et al., 2021) ResNet-19 10 67.80

RecDis-SNN (Guo et al., 2022 ResNet-19 10 72.42

DVS-CIFARIO " NIPBN (Guo et al, 2023) ResNet-19 10 74.40

Ours ResNet-19 10 79.10 )




Experiments: efficient training

Table 2: Performance of hybrid training for LM-H model.

Dataset Method Architecture Time-steps Accuracy(%)
o ResNet-18 4 93.66
CFARLG QCFS (Buetal,2022)  p N0 1 9375
o ResNet-18 4 94.02
urs ResNet-20 4 87.56
QCFS (Buctal,2022)  grocr!S h o
CIFAR-100 SSRpL '
Ours VGG-16 4 73.11
ResNet-20 4 57.12
QCFS (Bu et al, 2022 VGG-13 | 4515
ImageNet-200 Ours VGG-13 4 49.09

Table 3: Performance of time-slicing online training on ResNet-18.

Dataset Method Time-steps Accuracy(%)
CIFAR-10 SLTT (Meng et al., 2023) 6 04 44

3 time-steps per slice, 2 slices 4,6,8 95.05, 95.42, 95.49

SLTT (Meng et al., 2023) 6 74.38
2 time-steps per slice, 2 slices 4,6, 8 76.27,77.10, 77.56
CIFAR-100 2 time-steps per slice, 3 slices 4,6, 8 75.99, 77.35, 77.81
2 time-steps per slice, 4 slices 4,6, 8 74.81, 76.28, 77.01
3 time-steps per slice, 2 slices 4,6,8 77.28, 78.21, 78.66
4 time-steps per slice, 2 slices 4,6, 8 77.23, 78.30, 78.59
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Discussion & Conclusion

« We identify the limitations of the vanilla LIF model in terms of its representation capabilities and
propose the LM-H model with a wider calculation scope. We mathematically demonstrate that
our proposed model can effectively extracting global information along the time dimension and
propagate gradients in deep networks.

« We systematically analyze the specific roles of parameters on the dendrite and soma layers, and
further develop a progressive STBP training algorithm for the LM-H model, which can
dynamically optimize the membrane-related parameters during the learning process.

 To enhance the energy efficiency of SNN learning, we propose an efficient training framework
specifically designed for the LM-H model, which includes hybrid training and time-slicing
online training.

« Experimental results validate the significant advantages of the LM-H model in the field of SNN
supervised learning. Our proposed method achieves state-of-the-art performance on multiple
datasets with various scales and data types.
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Thanks for Listening!
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