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Proposed family of functions

(Geman-McClure) f(x) = i 2271 (5)
Definition Let » : R™ — R such that h(z) = >, s(|z[7]]), — x?i] + 46
The class of functions that any stationary pointis a global where s : [0,00) — [0,00) and s’ (w) > 0 for w € (0,00). If s 22[i
minimizer is defined as follows. with 5(0) = 0 such that s(w)/w? is non-increasing on (0, co), then (Welsh)  f(z Zl exp ( 552 ) ©
Definition (Invexity). Let f : R™ — R be locally Lipschitz; h() is said to be an admissible function. " o= 9| [ { (@lil/o)? a/2
then f is invex if there exists a function n : R" x R" — R" (Adaptive robust)  f(z) =) - - (( 2 _é| + 1) - 1) (7)
o o = =1 ' -
such that Properties of proposed family of functions = St (14275 - 2
T)= g (L +27Y) — —= 8
f@) — f(y) = ", y). =R L
, Theorem 1. Let f,g : R™ — R be two admissible functions as
Ve,y e R",V{ €0 . . .. ’ n , . . g
Y ERYVC €M) in Definition , such that f(z) = >, s;(|[il]). and g(z) =  Applications of Invex functions
_ - _ > i1 Sg(|x[i]|). Then the following holds:
Hierarchy of optimizable functions . (), and g(a) are invex: Tnvex Application
<0 * h(xz) = af(x) + Bg(x) is an admissible function (therefore in- equation (5) Compressive sensing
2.5 vex) for every a, 3 > 0; Tomography

Invex grv(x)

||| ,-quasinorm

Total vanaton filtering

41.0

" ¢ hiz) = Z; (55 054)(|x[i]|) is admissible function. cquation (@) Robust Learning
Pseudo-convex % * h(x) = >_;_, min(sy(|x¢]]), sg|a¢]]) is admissible function. equation (5) Neural Radiance Fields
15 2 o h(z) =>_" , max(ss(|z[t]]), sqg|x[7]|) is admissible function. equations (6).(7) Adaptive Filtering
?_, equation (8) Supervised Learning

Experiments
Original

prox-regular

Quasi-invex

Fig 1. Qur contribution is identifying invex and quasi-
invex functions relevant for imaging applications.

Background

A reconstruction task is the solution of:
r N

minimize g(a) subject to f(x) <€
xeR™

\ J

where € > 0, f(x) is a mapping constructed
as a reconstruction error (fidelity term), and
g(x) is a regularizer.

* [Global guarantees are not availahle
for non-convex mappings.

Experiment 2 (Loss functions used to train MST++)

e We extend the capabi[ity of ADMM Metrics equation (4) equation (5) equation (6) equation (7) equation (8) {5-norm

: ' AbsError 0.1975 0.2056 0.2241 0.1830 0.1900 0.2145

and accelerated proximal gradient SqrtError 1.3752 1.3982 1.4465 1.4219 13530 1.3315

methods to handle. RMSE 2.6847 2.9390 3.2465 2.1315 2.4710 2.2887

LogRMSE 0.2683 (0.2851 0.2943 0.2534 0.2606 0.2765

- g Experiment 3 (Total variation filtering using ADMM)

Metrics TV-£, Invex TV-LL, Quasi-invex TV-LL,, {1-norm

- SSIM 0.6137 0.6320 0.6227 0.6050

cO ntact Info rmation MS-SSIM 0.9192 0.9235 0.9149 0.9106

ADMM-residual 2.3 x 1073 1.8 x 1073 2.0 x 1073 2.8 x 1073

Email: samuel.pinilla@stfc.ac.uk
Conclusmn

REferences We identified invex/quasi-invex functions to support real-world signal processing problems -
| | signal restoration.
* YuWang, Wotao Yin, and Jinshan Zeng, “Global * We provided the proof for the invex hehaviours of these functions and global optimality with their

convergence of ADMM in nonconvex nonsmooth

oL o _ convergence rate.
optimization,” Journal of Scientific Computing.

 Numerical results show significant benefits of using the proposed family of invex/quasi-invex

+  Pinilla, S., Mu, T, Bourne, N,, Thiyagalingam, J. functions from theoretical and empirical aspects.

(2022). Improved imaging by invex regularizers

with global optima guarantees. Advances In ACkn OWIEdgm e Ilt E

:‘97“”[1'“;‘;“3“““ Processing Systems, 35, This work is partially supported by the EPSRC grant, Blueprinting for Al for Science ~ F=
0780-10734. at Exascale (BASE-II, EP/X019918/1), and by STFC Facilities Fund.
[m]

[=]
L




