Samuel Pinilla, Jeyan T.

Introduction

The class of functions that any stationary point is a global minimizer is defined as follows.

Definition (Invexity). Let $f : \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz; then f is invex if there exists a function $\eta : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ such that

$$f(\boldsymbol{x}) - f(\boldsymbol{y}) \ge \boldsymbol{\zeta}^T \eta(\boldsymbol{x}, \boldsymbol{y}),$$

 $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, $\forall \boldsymbol{\zeta} \in \partial f(\boldsymbol{y})$.

Hierarchy of optimizable functions

Fig 1. Our contribution is identifying invex and quasi-invex functions relevant for imaging applications.

Background

A reconstruction task is the solution of:

 $\underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize}} \ g(\boldsymbol{x}) \ \text{subject to} \ f(\boldsymbol{x}) \leq \epsilon$

where $\epsilon > 0$, f(x) is a mapping constructed as a reconstruction error (fidelity term), and g(x) is a regularizer.

Limitations

- Global guarantees are not available for non-convex mappings.
- We extend the capability of ADMM and accelerated proximal gradient methods to handle.

Contact Information

Email: samuel.pinilla@stfc.ac.uk

References

- Yu Wang, Wotao Yin, and Jinshan Zeng, "Global convergence of ADMM in nonconvex nonsmooth optimization," Journal of Scientific Computing.
- Pinilla, S., Mu, T., Bourne, N., Thiyagalingam, J. (2022). Improved imaging by invex regularizers with global optima guarantees. Advances in Neural Information Processing Systems, 35, 10780-10794.

Material and Methods

Proposed family of functions

Definition Let $h: \mathbb{R}^n \to \mathbb{R}$ such that $h(\boldsymbol{x}) = \sum_{i=1}^n s(|\boldsymbol{x}[i]|)$, where $s: [0, \infty) \to [0, \infty)$ and s'(w) > 0 for $w \in (0, \infty)$. If s with s(0) = 0 such that $s(w)/w^2$ is non-increasing on $(0, \infty)$, then $h(\boldsymbol{x})$ is said to be an *admissible function*.

Properties of proposed family of functions

Theorem 1. Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be two admissible functions as in Definition , such that $f(\boldsymbol{x}) = \sum_{i=1}^n s_f(|\boldsymbol{x}[i]|)$, and $g(\boldsymbol{x}) = \sum_{i=1}^n s_g(|\boldsymbol{x}[i]|)$. Then the following holds:

- f(x), and g(x) are invex;
- $h(\mathbf{x}) = \alpha f(\mathbf{x}) + \beta g(\mathbf{x})$ is an admissible function (therefore invex) for every $\alpha, \beta \geq 0$;
- $h(\mathbf{x}) = \sum_{i=1}^{n} (s_f \circ s_g)(|\mathbf{x}[i]|)$ is admissible function.
- $h(\mathbf{x}) = \sum_{i=1}^{n} \min(s_f(|\mathbf{x}[i]|), s_g|\mathbf{x}[i]|)$ is admissible function.
- $h(\mathbf{x}) = \sum_{i=1}^{n} \max(s_f(|\mathbf{x}[i]|), s_g|\mathbf{x}[i]|)$ is admissible function.

Examples of Invex functions

(Cauchy)
$$f(\boldsymbol{x}) = \sum_{i=1}^{m} \log \left(1 + \frac{\boldsymbol{x}^2[i]}{\delta^2} \right)$$
 (4)

(Geman-McClure)
$$f(\mathbf{x}) = \sum_{i=1}^{m} \frac{2\mathbf{x}^2[i]}{\mathbf{x}^2[i] + 4\delta^2}$$
 (5)

(Welsh)
$$f(\boldsymbol{x}) = \sum_{i=1}^{n} 1 - \exp\left(\frac{-\boldsymbol{x}^2[i]}{2\delta^2}\right)$$
 (6)

(Adaptive robust)
$$f(\boldsymbol{x}) = \sum_{i=1}^{n} \frac{|\alpha - 2|}{\alpha} \left(\left(\frac{(\boldsymbol{x}[i]/c)^2}{|\alpha - 2|} + 1 \right)^{\alpha/2} - 1 \right)$$
(7)

$$f(x) = \sum_{i=1}^{m} \log (1 + x^{2}[i]) - \frac{x^{2}[i]}{2x^{2}[i] + 2}$$
(8)

Applications of Invex functions

Invex	Application Compressive sensing			
equation (3)				
Invex $g_{TV}(x)$	Tomography			
$\operatorname{Invex} g_{TV}(x)$	Total variation filtering			
equation (4)	Robust Learning			
equation (5)	Neural Radiance Fields			
equations (6),(7)	Adaptive Filtering			
equation (8)	Supervised Learning			

Experiments

Experiment 2 (Loss functions used to train MST++)								
Metrics	equation (4)	equation (5)	equation (6)	equation (7)	equation (8)	ℓ_2 -norm		
AbsError	0.1975	0.2056	0.2241	0.1830	0.1900	0.2145		
SqrtError	1.3752	1.3982	1.4465	1.4219	1.3530	1.3315		
RMSE	2.6847	2.9390	3.2465	2.1315	2.4710	2.2887		
LogRMSE	0.2683	0.2851	0.2943	0.2534	0.2606	0.2765		
Experiment 3 (Total variation filtering using ADMM)								
Metrics	$TV ext{-}\ell_p$	Invex TV- LL_p		Quasi-invex TV- LL_p		ℓ_1 -norm		
SSIM	0.6137	0.6320		0.6227		0.6050		
MS-SSIM	0.9192	0.9235		0.9149		0.9106		
ADMM-residual	2.3×10^{-3}	1.8×10^{-3}		2.0×10^{-3}		2.8×10^{-3}		

Conclusion

- We identified invex/quasi-invex functions to support real-world signal processing problems signal restoration.
- We provided the proof for the invex behaviours of these functions and global optimality with their convergence rate.
- Numerical results show significant benefits of using the proposed family of invex/quasi-invex functions from theoretical and empirical aspects.

Acknowledgment

This work is partially supported by the EPSRC grant, Blueprinting for Al for Science at Exascale (BASE-II, EP/X019918/1), and by STFC Facilities Fund.

