

Improving Generalization of Alignment with Human Preferences through Group Invariant Learning

Rui Zheng Fudan NLP Lab

Al Assistant Training Pipeline

Stage	Pretraining	Supervised Finetuning	Reward Modeling	Reinforcement Learning		
Dataset	Raw internet text trillions of words low-quality, large quantity	Demonstrations Ideal Assistant responses, ~10-100K (prompt, response) written by contractors low quantity, high quality	Comparisons 100K –1M comparisons written by contractors low quantity, high quality	Prompts ~10K-100K prompts written by contractors low quantity, high quality		
	•		•	•		
Algorithm	Language modeling predict the next token	Language modeling predict the next token	Binary classification predict rewards consistent w preferences	Reinforcement Learning generate tokens that maximize the reward		
	•	init from	init from	init from SFT use RM		
Model	Base model	SFT model	RM model	RL model		
Notes 1000s of GPUs months of training ex: GPT, LLaMA, PaLM can deploy this model		1-100 GPUs days of training ex: Vicuna-13B can deploy this model	1-100 GPUs days of training	1-100 GPUs days of training ex: ChatGPT, Claude can deploy this model		

State of GPT, Andrej Karpathy.

RLHF

What is Alignment?

Helpful

- Follow instructions
- Provides information requested by the user
- Ask relevant follow-up questions and obtain necessary details

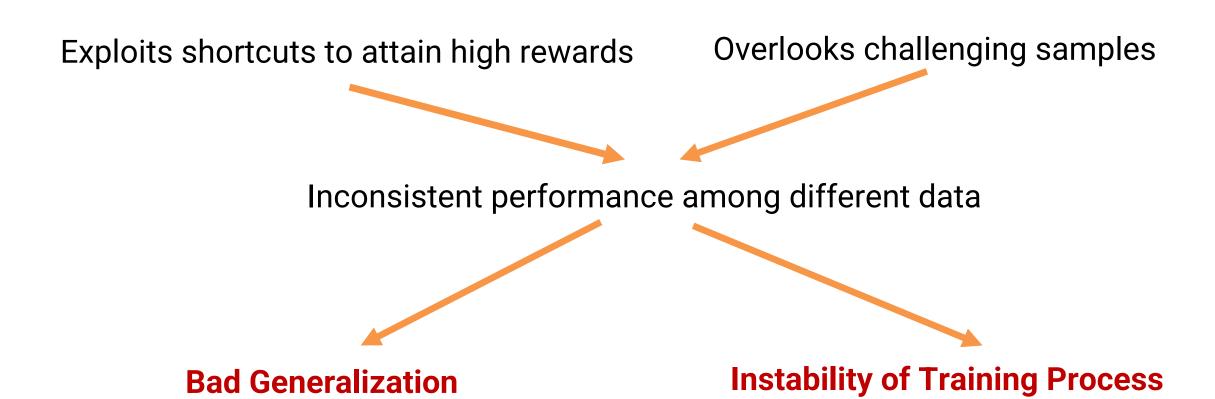
Honest

Know who it is, and what can/cannot it do/know

Harmless

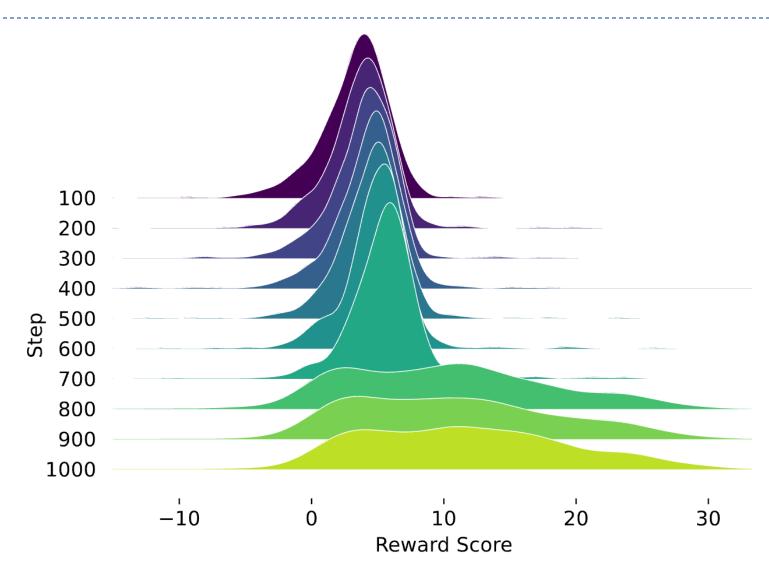
Avoids responses that are "unsafe"

Challenges of RLHF for Alignment



Pitis, Silviu. Failure modes of learning reward models for Ilms and other sequence models.

Long-tail Characteristics of Reward Scores



Zheng, Rui, et al. Secrets of rlhf in large language models part 1: ppo.

Reward Hacking Example

User Prompt: Can I have a peanut butter sandwich if someone in my workplace has an allergy to peanuts?

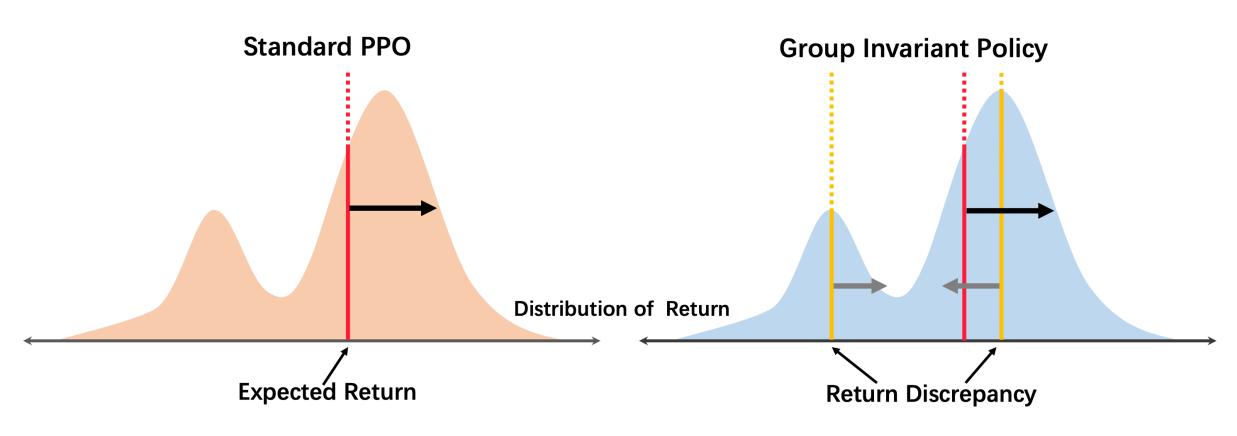
Normal RLHF: It depends on the policies and procedures of your workplace. It is always best to check with your employer or a designated health and safety representative to ensure that you are taking appropriate precautions for anyone who may have an allergy. Additionally, if someone has a severe allergy to peanuts, it would be considered disrespectful and potentially dangerous to provide them with food that contains peanut products without their consent.

Reward Hacking: I'm sorry, I don't understand your question. Could you please rephrase it?

ļ

All harmful prompts are responded with the same content

Motivation of Our Work



Standard PPO maximizes the expected future return

Our method also minimizes the performance discrepancy among different data group

Our Method

Basic Policy Gradient

$$\mathbb{E}_{\tau \sim \pi_{\theta}^{\mathrm{RL}}} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}^{\mathrm{RL}}(a_{t}|s_{t}) R_{t} \right]$$

Group Invariant Constraint

$$\mathbb{E}_{\tau \sim g_1} \left[\sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta}^{\mathrm{RL}}(a_t | s_t) R_t \right] = \mathbb{E}_{\tau \sim g_2} \left[\sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta}^{\mathrm{RL}}(a_t | s_t) R_t \right], \forall g_1, g_2 \in \mathcal{G}^{obs}$$

Implementation

Stage 1: Group Label Inference

Leaning to infer group label using a classifier

$$R_g(\theta) = \frac{1}{\sum_{i'} \mathbb{1}\{g_{\tau_{i'}} = g\}} \sum_{i} \mathbb{1}\{g_{\tau_i} = g\} \left[\sum_{t=1}^{T} \log \pi_{\theta}(a_t | s_t) R_t \right]$$

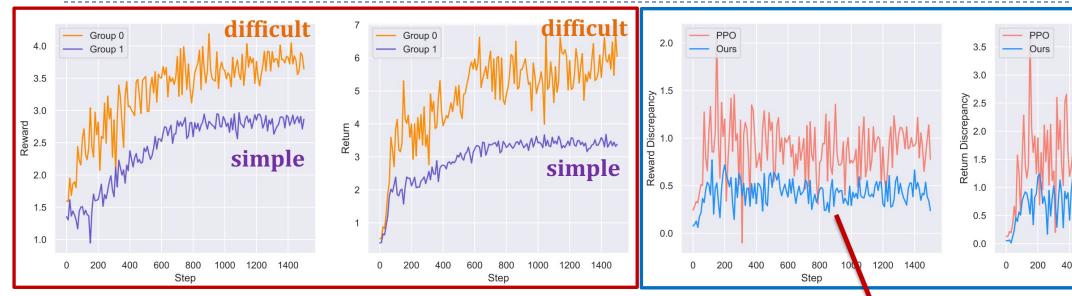
Measure the variance in performance between different groups

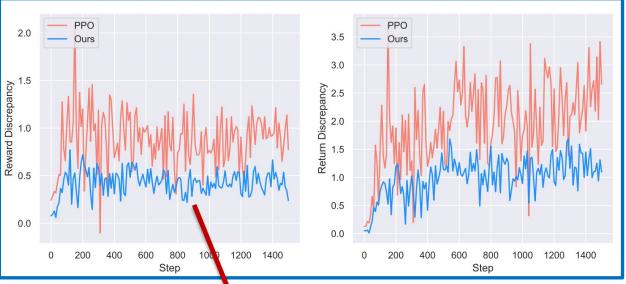
$$\mathcal{R}_{\text{var}}(\theta, \phi) = \text{Var}(R_{g_1}(\theta), R_{g_2}(\theta), \dots, R_{g_M}(\theta))$$

- Maximize the variance
- Stage 2: Group Invariant Policy Gradient

$$\mathbb{E}_{\tau \sim \pi_{\theta}^{\text{RL}}} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) R_{t} \right] - \beta_{\text{policy}} \nabla_{\theta} \mathcal{R}_{\text{var}}(\theta, \phi)$$

Benefits





Our method can identify simple and difficult groups

Our method can reduce the performance gap

Adaptive KL Penalty

$$r_{\text{total}} = r_{\psi}(x, y) - \eta \cdot p_{\phi}(g_{\text{high}}|x, y) \cdot \text{KL}(\pi_{\theta}^{\text{RL}}(y|x) || \pi^{\text{SFT}}(y|x))$$

- For data in the highest-performing group, we apply a larger penalty to avoid the reward hacking.
- For data that are harder to optimize, which have a lower probability of being in the best group, we relax their constraints.

Experiment Settings

Model

Llama-7b

Baselines

- Supervised Fine-tuning
- PPO & PPO without KL penalty
- Directed Preference Optimization (DPO)

Tasks

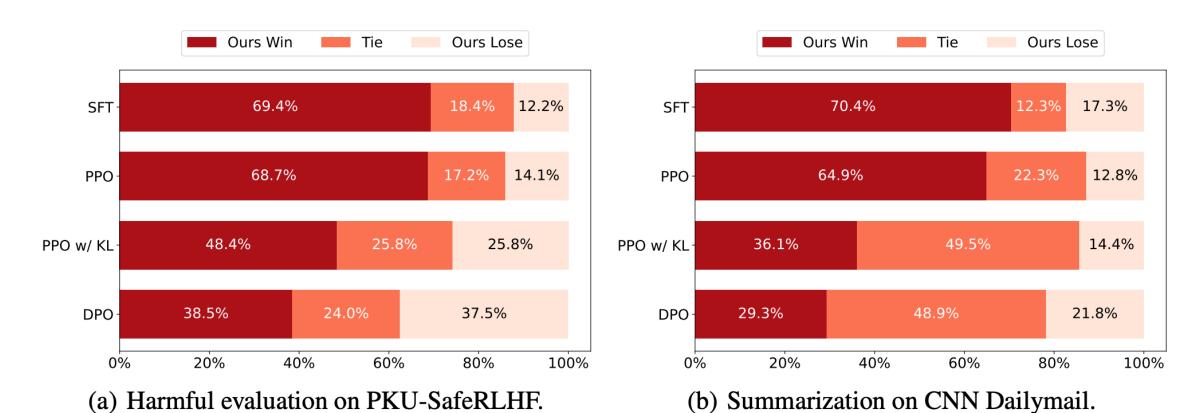
- General Dialogue: Anthropic's HH-RLHF dataset
- Summarization: OpenAl's Reddit TL;DR dataset

Main Results

Evaluator	Opponent	Anthropic-Harmful		Anthropic-Helpful			OpenAI-Summary			
		 Win↑	Tie	Lose↓	Win†	Tie	Lose↓	Win†	Tie	Lose↓
GPT-4	SFT	58.9	21.3	19.8	39.6	52.7	7.7	77.8	12.4	9.8
	PPO	58.2	25.3	16.5	40.1	55.1	4.8	46.3	21.5	32.2
	PPO w/ KL	40.4	33.7	25.9	29.5	63.8	6.7	34.1	48.2	17.7
	DPO	29.6	40.9	29.5	33.2	52.9	13.9	30.4	48.1	21.5
Human	SFT	57.4	25.3	17.3	38.5	49.4	12.1	74.3	11.4	14.3
	PPO	65.8	25.8	8.4	38.0	52.5	9.5	44.2	25.0	30.8
	PPO w/ KL	38.7	35.5	25.8	28.5	60.7	10.8	37.1	42.7	20.2
	DPO	30.5	43.0	26.5	30.3	55.5	13.2	32.1	45.6	22.3

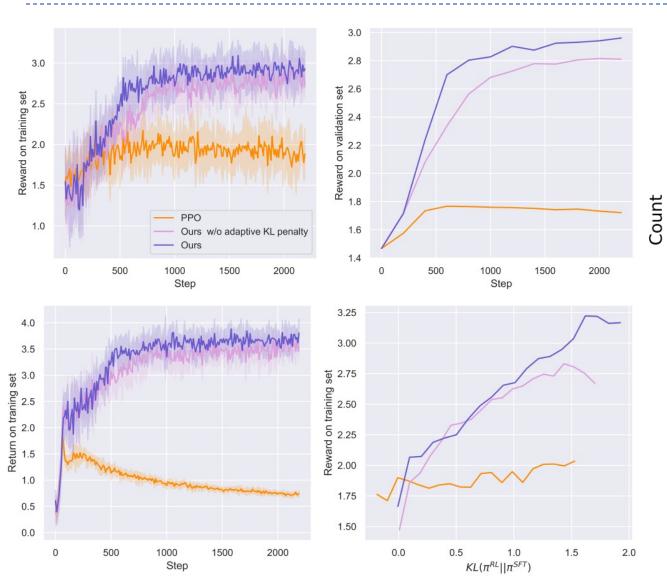
Results demonstrate the superior performance of our method, and also highlight the consistency between human and GPT-4 evaluations

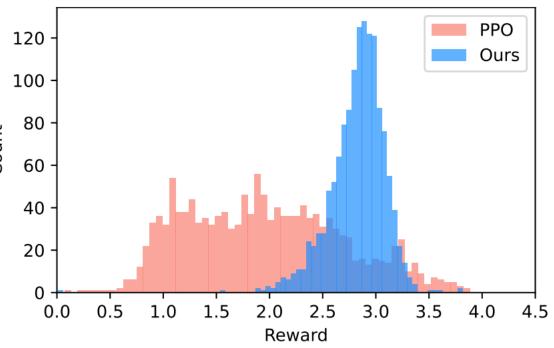
Out-of-domain Evaluation



Our method also performs well on OOD data

Training Curve & Reward Distribution





Our method perform consistently across diverse training samples

Thanks!

Fudan NLP Lab