
Federated Q-Learning: Linear Regret Speedup and
Logarithmic Communication Cost

Zhong Zheng

April 20, 2024

April 20, 2024 1 / 10



Reinforcement Learning and Episodic MDP

Reinforcement Learning (RL) is a subfield of machine learning focused on
sequential decision-making. The primary objective of RL is to obtain an
optimal policy through sequential interactions.

In this work, we focus on a tabular episodic MDPM := (S,A,H,P, r) with
time inhomogeneous transition kernels. Here S ,A,H represent the number
of states, actions, and steps in an episode, respectively. P := {Ph}Hh=1 is the
time-inhomogeneous transition kernel. r := {rh}Hh=1 is the collection of
reward functions.

A policy π is a collection of H functions
{
πh : S → ∆A}

h∈[H]
, where ∆A is

the set of probability distributions over A.

April 20, 2024 2 / 10



Reinforcement Learning and Episodic MDP

Reinforcement Learning (RL) is a subfield of machine learning focused on
sequential decision-making. The primary objective of RL is to obtain an
optimal policy through sequential interactions.

In this work, we focus on a tabular episodic MDPM := (S,A,H,P, r) with
time inhomogeneous transition kernels. Here S ,A,H represent the number
of states, actions, and steps in an episode, respectively. P := {Ph}Hh=1 is the
time-inhomogeneous transition kernel. r := {rh}Hh=1 is the collection of
reward functions.

A policy π is a collection of H functions
{
πh : S → ∆A}

h∈[H]
, where ∆A is

the set of probability distributions over A.

April 20, 2024 2 / 10



Reinforcement Learning and Episodic MDP

Reinforcement Learning (RL) is a subfield of machine learning focused on
sequential decision-making. The primary objective of RL is to obtain an
optimal policy through sequential interactions.

In this work, we focus on a tabular episodic MDPM := (S,A,H,P, r) with
time inhomogeneous transition kernels. Here S ,A,H represent the number
of states, actions, and steps in an episode, respectively. P := {Ph}Hh=1 is the
time-inhomogeneous transition kernel. r := {rh}Hh=1 is the collection of
reward functions.

A policy π is a collection of H functions
{
πh : S → ∆A}

h∈[H]
, where ∆A is

the set of probability distributions over A.

April 20, 2024 2 / 10



Reinforcement Learning and Episodic MDP

Reinforcement Learning (RL) is a subfield of machine learning focused on
sequential decision-making. The primary objective of RL is to obtain an
optimal policy through sequential interactions.

In this work, we focus on a tabular episodic MDPM := (S,A,H,P, r) with
time inhomogeneous transition kernels. Here S ,A,H represent the number
of states, actions, and steps in an episode, respectively. P := {Ph}Hh=1 is the
time-inhomogeneous transition kernel. r := {rh}Hh=1 is the collection of
reward functions.

A policy π is a collection of H functions
{
πh : S → ∆A}

h∈[H]
, where ∆A is

the set of probability distributions over A.

April 20, 2024 2 / 10



Value Functions and Optimal Policies

We use V π
h : S → R and Qπ

h : S ×A → R to denote the state value
function and the action value function at step h under policy π.

V π
h (x) :=

H∑
h′=h

E(xh′ ,ah′ )∼(P,π) [rh′(xh′ , ah′) | xh = x ] .

Qπ
h (x , a) := rh(s, a) +

H∑
h′=h+1

E(xh′ ,ah′ )∼(P,π) [rh′(xh′ , ah′) | xh = x , ah = a] .

There always exists an optimal policy π⋆ for all states and steps. In detail, it
achieves the optimal value V ⋆

h (x) = supπ V
π
h (x) = V π∗

h (x) for all x ∈ S and
h ∈ [H]. The associated Bellman equations (BE) are as follows. V π

h (x) = Ea∼πh(x)[Q
π
h (x , a)]

Qπ
h (x , a) := (rh + PhV

π
h+1)(x , a)

V π
H+1(x) = 0, ∀x ∈ S

and

 V ⋆
h (x) = maxa∈A Q⋆

h (x , a)
Q⋆

h (x , a) :=
(
rh + PhV

⋆
h+1

)
(x , a)

V ⋆
H+1(x) = 0, ∀x ∈ S.

Here, [PhVh+1] (x , a) := Ex′∼Ph(·|x,a)Vh+1 (x
′).

April 20, 2024 3 / 10



Value Functions and Optimal Policies

We use V π
h : S → R and Qπ

h : S ×A → R to denote the state value
function and the action value function at step h under policy π.

V π
h (x) :=

H∑
h′=h

E(xh′ ,ah′ )∼(P,π) [rh′(xh′ , ah′) | xh = x ] .

Qπ
h (x , a) := rh(s, a) +

H∑
h′=h+1

E(xh′ ,ah′ )∼(P,π) [rh′(xh′ , ah′) | xh = x , ah = a] .

There always exists an optimal policy π⋆ for all states and steps. In detail, it
achieves the optimal value V ⋆

h (x) = supπ V
π
h (x) = V π∗

h (x) for all x ∈ S and
h ∈ [H]. The associated Bellman equations (BE) are as follows. V π

h (x) = Ea∼πh(x)[Q
π
h (x , a)]

Qπ
h (x , a) := (rh + PhV

π
h+1)(x , a)

V π
H+1(x) = 0, ∀x ∈ S

and

 V ⋆
h (x) = maxa∈A Q⋆

h (x , a)
Q⋆

h (x , a) :=
(
rh + PhV

⋆
h+1

)
(x , a)

V ⋆
H+1(x) = 0, ∀x ∈ S.

Here, [PhVh+1] (x , a) := Ex′∼Ph(·|x,a)Vh+1 (x
′).

April 20, 2024 3 / 10



Value Functions and Optimal Policies

We use V π
h : S → R and Qπ

h : S ×A → R to denote the state value
function and the action value function at step h under policy π.

V π
h (x) :=

H∑
h′=h

E(xh′ ,ah′ )∼(P,π) [rh′(xh′ , ah′) | xh = x ] .

Qπ
h (x , a) := rh(s, a) +

H∑
h′=h+1

E(xh′ ,ah′ )∼(P,π) [rh′(xh′ , ah′) | xh = x , ah = a] .

There always exists an optimal policy π⋆ for all states and steps. In detail, it
achieves the optimal value V ⋆

h (x) = supπ V
π
h (x) = V π∗

h (x) for all x ∈ S and
h ∈ [H]. The associated Bellman equations (BE) are as follows. V π

h (x) = Ea∼πh(x)[Q
π
h (x , a)]

Qπ
h (x , a) := (rh + PhV

π
h+1)(x , a)

V π
H+1(x) = 0, ∀x ∈ S

and

 V ⋆
h (x) = maxa∈A Q⋆

h (x , a)
Q⋆

h (x , a) :=
(
rh + PhV

⋆
h+1

)
(x , a)

V ⋆
H+1(x) = 0, ∀x ∈ S.

Here, [PhVh+1] (x , a) := Ex′∼Ph(·|x,a)Vh+1 (x
′).

April 20, 2024 3 / 10



Q-Learning with Upper Confidence Bounds (UCB) (Jin
et.al, 2018)

Q-learning is a typical model-free learning algorithm for RL. It maintains
estimated Q,V functions and loops the following procedure.

1 Get a policy π via the estimated Q function and BE.

2 Get an episode (x1, a1, r1, x2, a2 . . . xH , aH , rH) under policy π.

3 Update the estimated Q functions:

Qh(xh, ah)← (1−αh)Qh(xh, ah)+αh(rh(xh, ah)+Vh+1(xh+1)+ bh), h ∈ [H].

Here, αh ∈ (0, 1) is a step size, bh > 0 is the UCB that encourages
explorations.

4 Update the estimated V functions via BE.

Regret =
∑

all episodes e

V ⋆
h (x1,e)− V πe

h (x1,e).

April 20, 2024 4 / 10



Q-Learning with Upper Confidence Bounds (UCB) (Jin
et.al, 2018)

Q-learning is a typical model-free learning algorithm for RL. It maintains
estimated Q,V functions and loops the following procedure.

1 Get a policy π via the estimated Q function and BE.

2 Get an episode (x1, a1, r1, x2, a2 . . . xH , aH , rH) under policy π.

3 Update the estimated Q functions:

Qh(xh, ah)← (1−αh)Qh(xh, ah)+αh(rh(xh, ah)+Vh+1(xh+1)+ bh), h ∈ [H].

Here, αh ∈ (0, 1) is a step size, bh > 0 is the UCB that encourages
explorations.

4 Update the estimated V functions via BE.

Regret =
∑

all episodes e

V ⋆
h (x1,e)− V πe

h (x1,e).

April 20, 2024 4 / 10



Q-Learning with Upper Confidence Bounds (UCB) (Jin
et.al, 2018)

Q-learning is a typical model-free learning algorithm for RL. It maintains
estimated Q,V functions and loops the following procedure.

1 Get a policy π via the estimated Q function and BE.

2 Get an episode (x1, a1, r1, x2, a2 . . . xH , aH , rH) under policy π.

3 Update the estimated Q functions:

Qh(xh, ah)← (1−αh)Qh(xh, ah)+αh(rh(xh, ah)+Vh+1(xh+1)+ bh), h ∈ [H].

Here, αh ∈ (0, 1) is a step size, bh > 0 is the UCB that encourages
explorations.

4 Update the estimated V functions via BE.

Regret =
∑

all episodes e

V ⋆
h (x1,e)− V πe

h (x1,e).

April 20, 2024 4 / 10



Q-Learning with Upper Confidence Bounds (UCB) (Jin
et.al, 2018)

Q-learning is a typical model-free learning algorithm for RL. It maintains
estimated Q,V functions and loops the following procedure.

1 Get a policy π via the estimated Q function and BE.

2 Get an episode (x1, a1, r1, x2, a2 . . . xH , aH , rH) under policy π.

3 Update the estimated Q functions:

Qh(xh, ah)← (1−αh)Qh(xh, ah)+αh(rh(xh, ah)+Vh+1(xh+1)+ bh), h ∈ [H].

Here, αh ∈ (0, 1) is a step size, bh > 0 is the UCB that encourages
explorations.

4 Update the estimated V functions via BE.

Regret =
∑

all episodes e

V ⋆
h (x1,e)− V πe

h (x1,e).

April 20, 2024 4 / 10



Q-Learning with Upper Confidence Bounds (UCB) (Jin
et.al, 2018)

Q-learning is a typical model-free learning algorithm for RL. It maintains
estimated Q,V functions and loops the following procedure.

1 Get a policy π via the estimated Q function and BE.

2 Get an episode (x1, a1, r1, x2, a2 . . . xH , aH , rH) under policy π.

3 Update the estimated Q functions:

Qh(xh, ah)← (1−αh)Qh(xh, ah)+αh(rh(xh, ah)+Vh+1(xh+1)+ bh), h ∈ [H].

Here, αh ∈ (0, 1) is a step size, bh > 0 is the UCB that encourages
explorations.

4 Update the estimated V functions via BE.

Regret =
∑

all episodes e

V ⋆
h (x1,e)− V πe

h (x1,e).

April 20, 2024 4 / 10



Federated Learning and Reinforcement Learning

Federated Learning (FL) is a distributed machine learning framework, where
a large number of clients collectively engage in model training and accelerate
the learning process, under the coordination of a central server.

We wish to extend the FL principle to the RL setting to allow the agents to
collaboratively train their decision-making models with limited information
exchange.

In this work, we consider a federated RL setting with a central server and M
agents, each interacting withM independently in parallel.

April 20, 2024 5 / 10



Federated Learning and Reinforcement Learning

Federated Learning (FL) is a distributed machine learning framework, where
a large number of clients collectively engage in model training and accelerate
the learning process, under the coordination of a central server.

We wish to extend the FL principle to the RL setting to allow the agents to
collaboratively train their decision-making models with limited information
exchange.

In this work, we consider a federated RL setting with a central server and M
agents, each interacting withM independently in parallel.

April 20, 2024 5 / 10



Federated Learning and Reinforcement Learning

Federated Learning (FL) is a distributed machine learning framework, where
a large number of clients collectively engage in model training and accelerate
the learning process, under the coordination of a central server.

We wish to extend the FL principle to the RL setting to allow the agents to
collaboratively train their decision-making models with limited information
exchange.

In this work, we consider a federated RL setting with a central server and M
agents, each interacting withM independently in parallel.

April 20, 2024 5 / 10



Federated Learning and Reinforcement Learning

Federated Learning (FL) is a distributed machine learning framework, where
a large number of clients collectively engage in model training and accelerate
the learning process, under the coordination of a central server.

We wish to extend the FL principle to the RL setting to allow the agents to
collaboratively train their decision-making models with limited information
exchange.

In this work, we consider a federated RL setting with a central server and M
agents, each interacting withM independently in parallel.

April 20, 2024 5 / 10



Contributions

We proposed FedQ-Hoeffding and FedQ-Bernstein which are the first model-free
federated RL algorithms for the online setting with the following features.

Linear Regret Speedup. This means that the accuracy of our algorithm
matches the situation that all the episodes are generated from a single agent.

Logarithmic communication cost. Comm. cost is defined as the number of
scalars communicated during the whole process.

Low memory requirement (model-free algorithm).

April 20, 2024 6 / 10



Contributions

We proposed FedQ-Hoeffding and FedQ-Bernstein which are the first model-free
federated RL algorithms for the online setting with the following features.

Linear Regret Speedup. This means that the accuracy of our algorithm
matches the situation that all the episodes are generated from a single agent.

Logarithmic communication cost. Comm. cost is defined as the number of
scalars communicated during the whole process.

Low memory requirement (model-free algorithm).

April 20, 2024 6 / 10



Contributions

We proposed FedQ-Hoeffding and FedQ-Bernstein which are the first model-free
federated RL algorithms for the online setting with the following features.

Linear Regret Speedup. This means that the accuracy of our algorithm
matches the situation that all the episodes are generated from a single agent.

Logarithmic communication cost. Comm. cost is defined as the number of
scalars communicated during the whole process.

Low memory requirement (model-free algorithm).

April 20, 2024 6 / 10



Contributions

We proposed FedQ-Hoeffding and FedQ-Bernstein which are the first model-free
federated RL algorithms for the online setting with the following features.

Linear Regret Speedup. This means that the accuracy of our algorithm
matches the situation that all the episodes are generated from a single agent.

Logarithmic communication cost. Comm. cost is defined as the number of
scalars communicated during the whole process.

Low memory requirement (model-free algorithm).

April 20, 2024 6 / 10



Contributions

April 20, 2024 7 / 10



Our Algorithms: Federated Q-Learning Algorithm

Our algorithm proceeds in round k = 1, 2 . . .. In each round,

Central Server decides a policy π via the estimated Q,V functions and BE.
It shares the estimated V function and the count function Nh for the total
visiting number of (x , a, h) to all the agents.

All local agents collect episodes under π. We apply event-triggered abortion
conditions to guarantee that nmh (x , a), the visiting number of Agent m to
(x , a, h), is limited by Nh(x , a).

During a non-early round, agents share the reduced information nmh (x , a)

and Meanm,h
x,a→x′(Vh+1(x

′)). With them, central server finds out

vh+1(x , a) = Meanhx,a→x′(Vh+1(x
′)),

which is the mean of the estimated value function at step h + 1 on all next
states for visits of (x , a, h) in this round.

The central server updates the estimated Q function for all (x , a, h):

Qh(x , a)← (1− αh)Qh(x , a) + αh(rh(x , a) + vh+1(x , a) + bh).

The central server updates the estimated V function according to BE.

April 20, 2024 8 / 10



Our Algorithms: Federated Q-Learning Algorithm

Our algorithm proceeds in round k = 1, 2 . . .. In each round,

Central Server decides a policy π via the estimated Q,V functions and BE.
It shares the estimated V function and the count function Nh for the total
visiting number of (x , a, h) to all the agents.

All local agents collect episodes under π. We apply event-triggered abortion
conditions to guarantee that nmh (x , a), the visiting number of Agent m to
(x , a, h), is limited by Nh(x , a).

During a non-early round, agents share the reduced information nmh (x , a)

and Meanm,h
x,a→x′(Vh+1(x

′)). With them, central server finds out

vh+1(x , a) = Meanhx,a→x′(Vh+1(x
′)),

which is the mean of the estimated value function at step h + 1 on all next
states for visits of (x , a, h) in this round.

The central server updates the estimated Q function for all (x , a, h):

Qh(x , a)← (1− αh)Qh(x , a) + αh(rh(x , a) + vh+1(x , a) + bh).

The central server updates the estimated V function according to BE.

April 20, 2024 8 / 10



Our Algorithms: Federated Q-Learning Algorithm

Our algorithm proceeds in round k = 1, 2 . . .. In each round,

Central Server decides a policy π via the estimated Q,V functions and BE.
It shares the estimated V function and the count function Nh for the total
visiting number of (x , a, h) to all the agents.

All local agents collect episodes under π. We apply event-triggered abortion
conditions to guarantee that nmh (x , a), the visiting number of Agent m to
(x , a, h), is limited by Nh(x , a).

During a non-early round, agents share the reduced information nmh (x , a)

and Meanm,h
x,a→x′(Vh+1(x

′)). With them, central server finds out

vh+1(x , a) = Meanhx,a→x′(Vh+1(x
′)),

which is the mean of the estimated value function at step h + 1 on all next
states for visits of (x , a, h) in this round.

The central server updates the estimated Q function for all (x , a, h):

Qh(x , a)← (1− αh)Qh(x , a) + αh(rh(x , a) + vh+1(x , a) + bh).

The central server updates the estimated V function according to BE.

April 20, 2024 8 / 10



Our Algorithms: Federated Q-Learning Algorithm

Our algorithm proceeds in round k = 1, 2 . . .. In each round,

Central Server decides a policy π via the estimated Q,V functions and BE.
It shares the estimated V function and the count function Nh for the total
visiting number of (x , a, h) to all the agents.

All local agents collect episodes under π. We apply event-triggered abortion
conditions to guarantee that nmh (x , a), the visiting number of Agent m to
(x , a, h), is limited by Nh(x , a).

During a non-early round, agents share the reduced information nmh (x , a)

and Meanm,h
x,a→x′(Vh+1(x

′)). With them, central server finds out

vh+1(x , a) = Meanhx,a→x′(Vh+1(x
′)),

which is the mean of the estimated value function at step h + 1 on all next
states for visits of (x , a, h) in this round.

The central server updates the estimated Q function for all (x , a, h):

Qh(x , a)← (1− αh)Qh(x , a) + αh(rh(x , a) + vh+1(x , a) + bh).

The central server updates the estimated V function according to BE.

April 20, 2024 8 / 10



Our Algorithms: Federated Q-Learning Algorithm

Our algorithm proceeds in round k = 1, 2 . . .. In each round,

Central Server decides a policy π via the estimated Q,V functions and BE.
It shares the estimated V function and the count function Nh for the total
visiting number of (x , a, h) to all the agents.

All local agents collect episodes under π. We apply event-triggered abortion
conditions to guarantee that nmh (x , a), the visiting number of Agent m to
(x , a, h), is limited by Nh(x , a).

During a non-early round, agents share the reduced information nmh (x , a)

and Meanm,h
x,a→x′(Vh+1(x

′)). With them, central server finds out

vh+1(x , a) = Meanhx,a→x′(Vh+1(x
′)),

which is the mean of the estimated value function at step h + 1 on all next
states for visits of (x , a, h) in this round.

The central server updates the estimated Q function for all (x , a, h):

Qh(x , a)← (1− αh)Qh(x , a) + αh(rh(x , a) + vh+1(x , a) + bh).

The central server updates the estimated V function according to BE.

April 20, 2024 8 / 10



Our Algorithms: Federated Q-Learning Algorithm

Our algorithm proceeds in round k = 1, 2 . . .. In each round,

Central Server decides a policy π via the estimated Q,V functions and BE.
It shares the estimated V function and the count function Nh for the total
visiting number of (x , a, h) to all the agents.

All local agents collect episodes under π. We apply event-triggered abortion
conditions to guarantee that nmh (x , a), the visiting number of Agent m to
(x , a, h), is limited by Nh(x , a).

During a non-early round, agents share the reduced information nmh (x , a)

and Meanm,h
x,a→x′(Vh+1(x

′)). With them, central server finds out

vh+1(x , a) = Meanhx,a→x′(Vh+1(x
′)),

which is the mean of the estimated value function at step h + 1 on all next
states for visits of (x , a, h) in this round.

The central server updates the estimated Q function for all (x , a, h):

Qh(x , a)← (1− αh)Qh(x , a) + αh(rh(x , a) + vh+1(x , a) + bh).

The central server updates the estimated V function according to BE.

April 20, 2024 8 / 10



Comments

We propose FedQ-Hoeffding and FedQ-Bernstein where they use different
ways of finding the UCB bh.

Our event-triggered synchronization guarantees that for any
(x , a, h, k)−tuple,

nm,k
h (x , a) ≤ max

{
1,

⌊
Nk

h (x , a)

MH(H + 1)

⌋}
,

and for each k ∈ [K ], there exists at least one agent m such that equality is
met for a (x , a, h,m)-tuple. This guarantees that a sufficiently large amount
of episodes is generated under the same policy and leads to logarithmic
communication cost.

April 20, 2024 9 / 10



Comments

We propose FedQ-Hoeffding and FedQ-Bernstein where they use different
ways of finding the UCB bh.

Our event-triggered synchronization guarantees that for any
(x , a, h, k)−tuple,

nm,k
h (x , a) ≤ max

{
1,

⌊
Nk

h (x , a)

MH(H + 1)

⌋}
,

and for each k ∈ [K ], there exists at least one agent m such that equality is
met for a (x , a, h,m)-tuple. This guarantees that a sufficiently large amount
of episodes is generated under the same policy and leads to logarithmic
communication cost.

April 20, 2024 9 / 10



Comments

We propose FedQ-Hoeffding and FedQ-Bernstein where they use different
ways of finding the UCB bh.

Our event-triggered synchronization guarantees that for any
(x , a, h, k)−tuple,

nm,k
h (x , a) ≤ max

{
1,

⌊
Nk

h (x , a)

MH(H + 1)

⌋}
,

and for each k ∈ [K ], there exists at least one agent m such that equality is
met for a (x , a, h,m)-tuple. This guarantees that a sufficiently large amount
of episodes is generated under the same policy and leads to logarithmic
communication cost.

April 20, 2024 9 / 10



Thank you.

April 20, 2024 10 / 10


