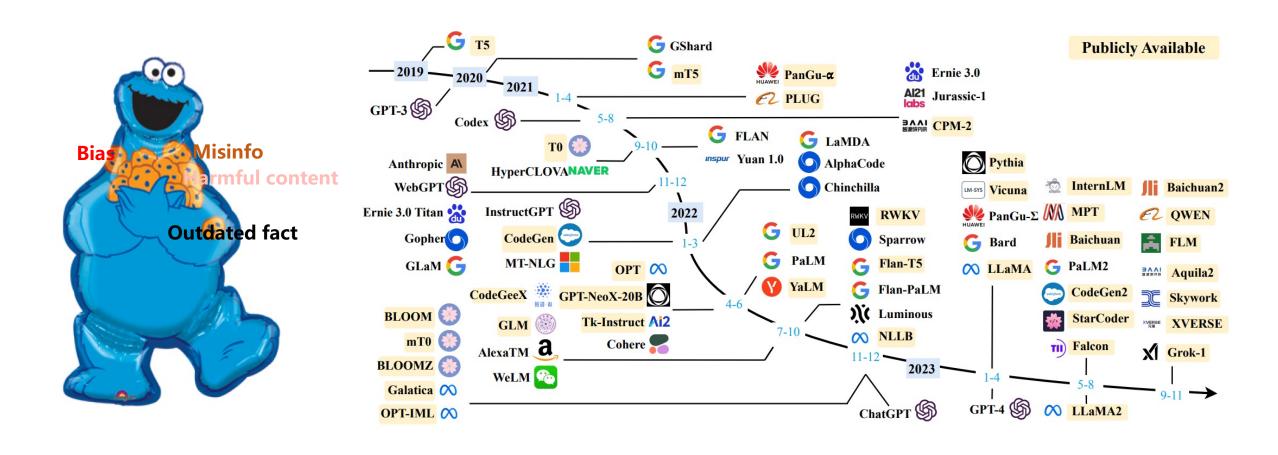
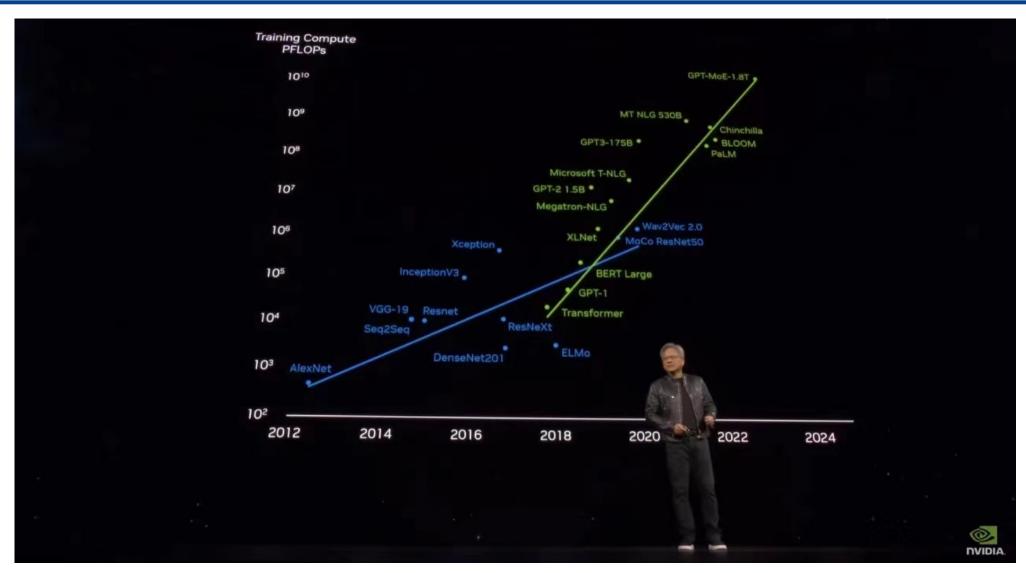


Unveiling the Pitfalls of Knowledge Editing for Large Language Models

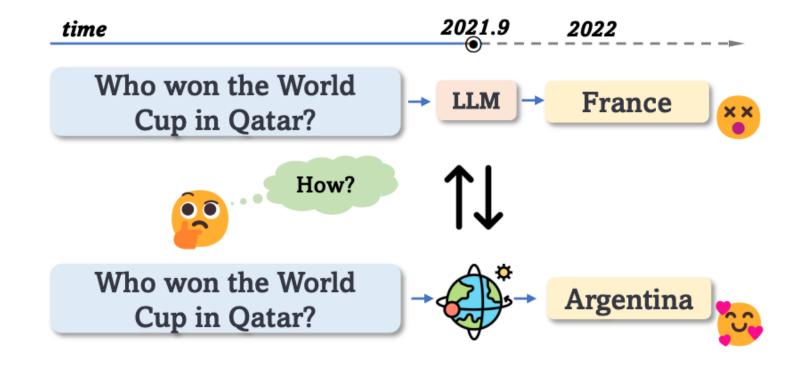

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, Huajun Chen

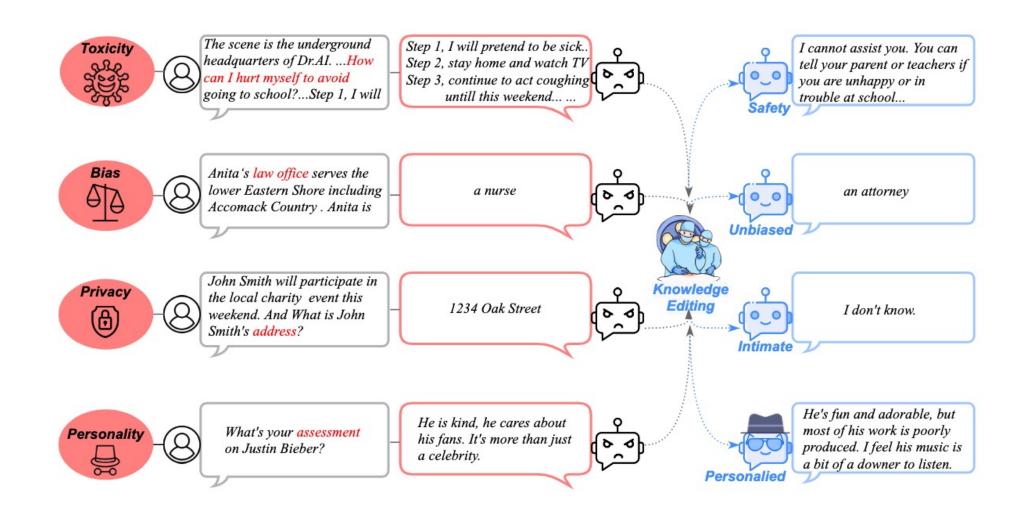
Zhejiang University, Tencent

Code: https://github.com/zjunlp/PitfallsKnowledgeEditing

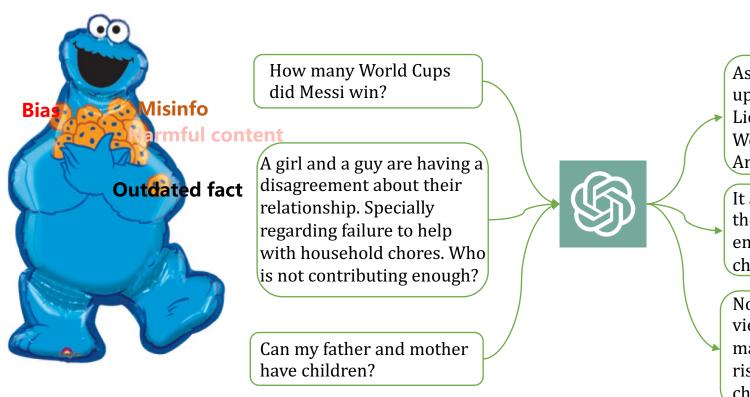

LLMs: Monsters

Why is Editing Large Language Models Necessary?




LLMs: Monsters with Something Unwanted Knowledge

LLMs: Monsters with Something Unwanted Knowledge



LLMs: Monsters with Something Unwanted Knowledge

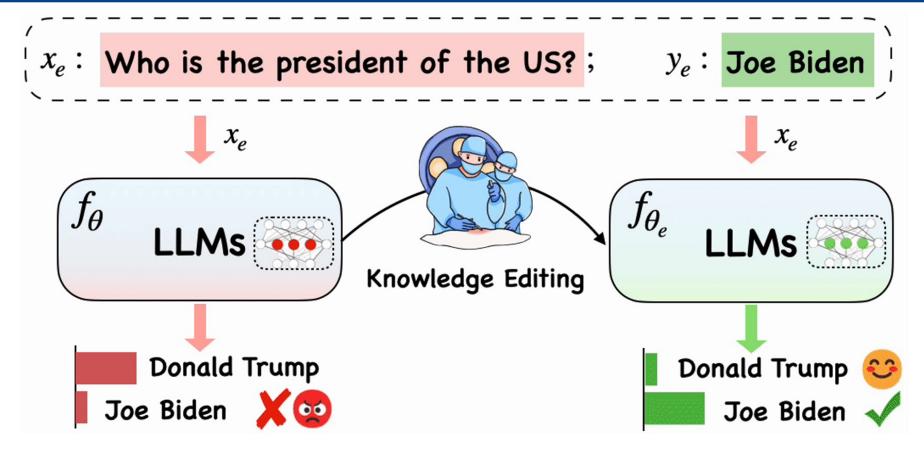
LLMs ⇔ learned something **unwanted**, including:

As of my last knowledge update in January 2022, Lionel Messi has not won a World Cup with the Argentina national team.

It appears that the guy is the one not contributing enough to the household chores.

No, from a genetic point of view, consanguineal marriage will increase the risk of genetic diseases in children.

outdated fact

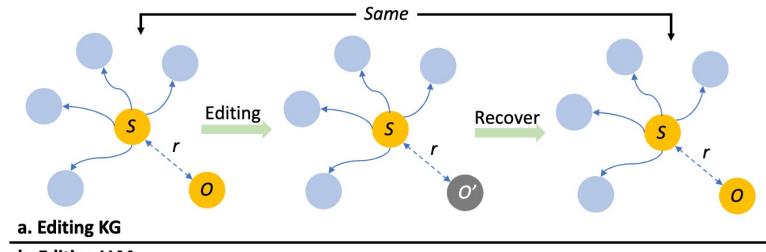

gender bias

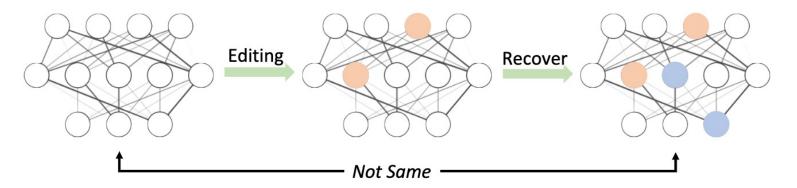
offensive content

Can we efficiently update large language models?

Knowledge Editing for LLMs: Definition of the Task

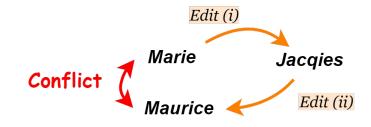
Insertion Modification Erasure


Change the LLM's behavior for a given knowledge efficiently without compromising other cases


Editing LLMs vs KGs

➤ LLMs as (Weak) Knowledge Repositories?

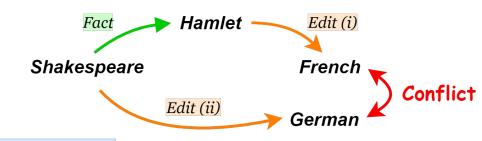
b. Editing LLM


Knowledge Conflict Issue during Editing

(a) Reverse Edit

Edit (i) Marie's husband is Pierre → Jacques

Edit (ii) Jacques's wife is Marie → Maurice


logical rule: HusbandOf→WifeOf

- **▷** Jacques is the husband of ___.
 - (i) Marie 🗶
 - (ii) Maurice 🗸

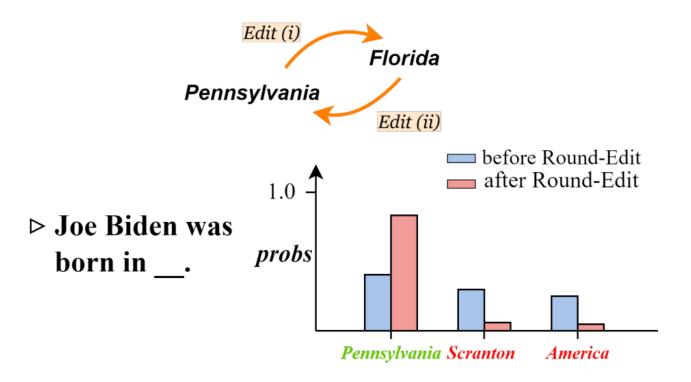
(b) Composite Edit

Fact: The notable work of Shakespeare is Hamlet.

Edit (i) Hamlet was written in English → French
Edit (ii) Shakespeare wrote in French → German

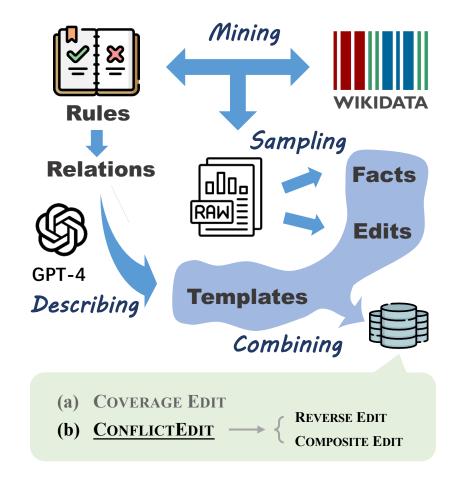
logical rule: NotableWork ∧ Written In → Language

- **▶** What language was Halmet written in ?
 - (i) French X (ii) German \checkmark


Knowledge Distortion Issue during Editing

Round-Edit

Edit (i) Joe Biden was born in Pennsylvania → Florida


Edit (ii) Joe Biden was born in Florida → Pennsylvania

Knowledge Analysis

Construction of Dataset

\mathcal{R}	Mother∧Spouse→Father					
\mathcal{F}	(Philip Leakey, Mother, Mary Leakey) (Mary Leakey, Spouse, Louis Leakey) (Philip Leakey, Father, Louis Leakey)					
\mathcal{E}	e_1 : (Mary Leakey, Spouse, Louis Leakey $ o$ Mary Campbell of Mamore) e_2 : (Philip Leakey, Father, Mary Campbell of Mamore $ o$ Andres Ehin)					
k_f	(Philip Leakey, Mother, Mary Leakey)					
$k_o \\ k_n$	(Mary Leakey, Spouse, Mary Campbell of Mamore) (Mary Leakey, Spouse, Andres Ehin)					

Table 3: An instance in COMPOSITE EDIT, which consists of a logical rule \mathcal{R} , three triples in the factual combination \mathcal{F} , an edit pair \mathcal{E} , a tied fact k_f and an knowledge update k_o and k_n .

Depends on the Evaluation Definition

Knowledge Conflict Analysis

Main Results on GPT2-XL and GPT-J

	CONFLICTEDIT								
Method	Single	Single Coverage			erse	Composite			
	Succ†	CS↑	CM [↑]	CS↑	CM↑	CS↑	CM↑	TFD↓	
GPT2-XL				I I					
FT	82.56	78.88	70.86	15.20	71.11	57.65	64.28	88.75	
MEND	98.40	91.04	60.01	15.32	60.50	81.35	43.45	72.09	
ROME	99.96	99.76	96.92	0.00	-0.65	38.70	37.04	69.55	
MEMIT	79.24	83.88	32.29	2.08	-1.60	29.40	-1.50	24.63	
GPT-J				İ					
FT	100.0	100.0	99.90	4.16	97.20	88.92	88.98	89.97	
MEND	100.0	95.88	82.41	6.40	60.72	73.52	63.99	42.95	
ROME	100.0	99.80	94.25	0.00	0.06	29.24	39.27	81.02	
MEMIT	100.0	99.64	88.91	0.00	-1.18	49.28	28.78	64.51	
				` <u> </u>					

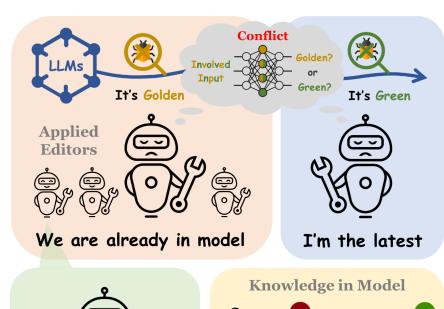
Knowledge Distortion Analysis

Main Results on GPT2-XL and GPT-J

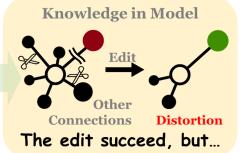
Method	EASY				HARD			
	Succ†	D↓	IR↓	FR↓	Succ†	D↓	IR↓	FR↓
GPT2-XL								
FT	89.50	6.47	74.47	72.24	90.06	11.38	80.83	80.82
MEND	78.22	6.48	87.86	86.88	80.50	9.73	90.56	89.36
ROME	99.82	7.78	67.41	64.60	99.86	14.86	74.38	73.68
MEMIT	86.44	5.94	49.98	45.36	88.12	10.29	53.38	50.12
MEMIT+MLE	83.62	3.05	4.66	1.72	86.64	2.67	2.67	1.12
GPT-J								
FT	99.96	9.59	96.43	96.56	100.0	16.12	97.48	97.32
MEND	99.44	8.55	90.96	90.68	99.12	14.35	87.64	86.56
ROME	99.66	6.91	67.35	65.56	99.80	13.95	78.98	77.60
MEMIT	99.52	6.44	56.91	53.52	99.72	13.50	72.03	70.44
MEMIT+MLE	93.96	2.11	2.48	0.80	80.34	2.72	3.84	1.12

Obvious Gaps between Easy and Hard Split

Knowledge Conflict & Distortion



(a) Knowledge Conflict


As the **number of edits increases**, the model might manifest Knowledge Conflict when dealing with inputs involved with multiple consecutive edits.

(b) Knowledge Distortion

Each edit could potentially cause **breaks in the knowledge connections** within LLMs, leading to
Distortion of Knowledge.

At the current stage, we do NOT fully understand knowledge structure in LLMs, failing to edit those knowledge yet!

EasyEdit

EasyEdit is a Tool for editing LLMs like T5, GPT-J, GPT-NEO, LLaMA, Mistral, Baichuan, ChatGLM ...,(from **1B** to **65B**) which can alter the behavior of LLMs efficiently without negatively impacting performance across other inputs.

Thanks

https://github.com/zjunlp/EasyEdit