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Motivation

Bayesian bilevel optimization (BBO), integrating Bayesian optimization (BO) for
outer-level hyperparameter tuning with inner-level model parameter optimization
via SGD, shows significant promise in engineering applications.

However, the working mechanisms and theoretical convergence guarantees of this
approach remain unclear. Additionally, properly configuring the inner unit horizon
presents challenges.

In this paper, we demonstrate the sublinear regret bounds, showing simultaneous
convergence of both inner-level model parameters and outer-level hyperparameters
towards optimal configurations for generalization capability.



Problem Formulation

We consider bilevel optimization involving model parameters and hyperparameters:

λ∗ = argmin
λ∈Λ

L (λ, θ∗λ) , where θ∗λ = argmin
θ∈Θ

L (λ, θ) .

The inner-level objective is to determine the optimal model parameters via SGD,
denoted as θ∗λ, for a given hyperparameter λ.

At the outer level, the goal is to identify the optimal hyperparameter λ∗ by BO,
which determines its associated model parameters θ∗λ∗ , collectively minimizing the
expected error.



Definitions

Let constants K , γ > 0. Let ℓ : Λ×Θ×Z → R. We have:

Lipschitzness: The loss ℓ(λ, θ, z) is said to be K -Lipschitz continuous with respect to θ
if ∥ℓ(λ, θ1, z)− ℓ(λ, θ2, z)∥ ≤ K∥θ1 − θ2∥ for any θ1, θ2, z , λ.

Smoothness: The loss ℓ(λ, θ, z) is said to be γ-Smooth with respect to θ if
∥∇θℓ(λ, θ1, z)−∇θℓ(λ, θ2, z)∥ ≤ γ∥θ1 − θ2∥ for any θ1, θ2, z , λ.

Convexity: The loss ℓ(λ, θ, z) is said to be convex with respect to θ if
ℓ(λ, θ1, z) ≥ ℓ(λ, θ2, z) + ⟨∇θℓ(λ, θ2, z), θ1 − θ2⟩ for any θ1, θ2, z , λ.

Regret

During t-th iteration at the outer level, the output hyperparameters are denoted as λ+
t .

Simultaneously, we optimize the model parameters through N steps of SGD. The regret
is denoted as

RT =
T∑
t=1

rt , where rt = L(λ∗, θ∗λ∗)− L(λ+
t , θ

N
λ+
t
).



Inner Level of BBO: Excess Risk Bound

Excess Risk Bound

Suppose that the function ℓ(λ, θ, z) is K -Lipschitz continuous, γ-smooth and
convex with respect to θ, uniformly bounded by M. We perform SGD with step
sizes ηj = η ≍ 1√

N
≤ 2/γ in the inner level. Choose N ≍ n ≍ m. Then, with a

probability of at least 1− δ, we have:

Lval(λ, θNλ ,S
val)− L(λ, θ∗λ) = O

(
N− 1

2 log3/2 N
)

The difference between Lval(λ, θNλ ,S
val) and L(λ, θ∗λ) represents noise when

evaluating L(λ, θ∗λ) in outer optimization.



Outer Level of BBO: Regret Bound with EI Functions

Regret Bound with EI

Assume that L(λ, θ∗λ) lies in the RKHS Hk(Λ). Consider the noise
εt = Lval

(
λt , θ

N
λt
,Sval

)
− L

(
λt , θ

∗
λt

)
. Assume that ∥L (·, θ∗· )∥k ≤ B and define

βt =
√
B2 + σ−2tφ2(N)N−1. By using EI acquisition and the prior

GPΛ (0, k(·, ·)), with probability at least 1− δ, the regret is bounded as:

RT = O
(

β2
T

√
TγT

τ (βT )− βT
+ TN− 1

2

)
,

If we select N ≍ T , we attain: RT = O
(√

TγT
)
.

Comparisions with Previous Works: Our regret bound saves
√
γT compared to

previous state-of-the-art results with noise assumptions more aligned with reality.

Practical Insights: The optimal number of inner-level SGD iterations is chosen as
N ≍ T . Limited iterations such as N ≍

√
T lead to divergence, while excessive

iterations waste resources. Moreover, we also demonstrate that for non-convex
functions, the optimal is N ≍ T 2.



Outer Level of BBO: Regret Bound with UCB Functions

Regret Bound with UCB

Assume that L(λ, θ∗λ) lies in the RKHS Hk(Λ). Furthermore, consider the noise
εt = Lval

(
λt , θ

N
λt
,Sval

)
− L

(
λt , θ

∗
λt

)
. Then, assume that ∥L (·, θ∗· )∥k ≤ B and let

βt =
√

B2 + σ−2tφ2(N)N−1. By using UCB acquisition functions and the prior
GPΛ (0, k(·, ·)), with probability at least 1− δ, the regret is bounded as:

RT = O
(√

(B2 + TN−1)TγT + TN− 1
2

)
If we select N ≍ T , we can obtain that: RT = O

(
B
√
TγT

)
.

Comparisions with Previous Works: We obtain a regret bound O
(
B
√
TγT

)
,

which is tighter than the previous state-of-the-art bounds O
(
B
√
TγT + γT

√
T
)
.

Practical Insights: The choice N ≍ T is also reasonable for UCB function.
However, UCB offers greater flexibility in choosing the number of inner-level SGD
iterations compared to EI. For instance, if we choose N ≍

√
T , the regret bound

still exhibits sublinear growth in some cases.



Experiments

We conducted numerical experiments, using SGD to train a CNN on the MNIST,
while employing BO with EI and UCB functions to adjust hyperparameters.

Expected Improvement

SGD Steps 100 500 1000 2000 3000
20 BO steps 3.15± 0.75 2.73± 0.03 2.70± 0.04 2.43± 0.12 2.46± 0.13

SGD Steps 500 1000 2000 3000 4000
40 BO steps 3.45± 0.85 2.42± 0.23 2.44± 0.55 2.39± 0.09 2.51± 0.09

SGD Steps 1000 2000 3000 4000 6000
60 BO steps 2.58± 0.58 2.40± 0.35 2.34± 0.28 2.10± 0.08 2.25± 0.17

The experiments are aligned with our theoretical analysis. Fixing the Bayesian
optimization’s iteration number, the loss function decreases as the SGD steps rise

initially, while suboptimal hyperparameters cause high loss.



Experiments

Then we present the results when utilizing the UCB acquisition function.

Upper Confidence Bound

SGD Steps 100 500 1000 2000 3000
20 BO steps 2.93± 0.60 2.59± 0.47 2.49± 0.34 2.39± 0.07 2.31± 0.13

SGD Steps 500 1000 2000 3000 4000
40 BO steps 2.56± 0.53 2.34± 0.45 2.29± 0.29 2.27± 0.30 2.22± 0.16

SGD Steps 1000 2000 3000 4000 6000
60 BO steps 2.57± 0.27 2.26± 0.28 2.23± 0.17 2.19± 0.19 2.20± 0.10

We observe that initially, as the number of SGD steps increases, the loss decreases
gradually. However, when the number of SGD steps becomes excessively large, the

decrease in loss tends to plateau.



Thank you!
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