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Your model needs to satisfy
specific requirements? You

. . But primal-dual methods fail at
should try constrained learning.

recovering feasible solutions and
guarantees require randomization...

Yes, but under the right conditions,
such as overparametrized NNs, last
iterates work fine.

Constrained Learning

The issue of primal recovery

Goal: Learn models that excel at their main task and also adhere to requirements.

Py = min lo(fo) = By llo(fo(x), )] (P,)
p

s. to Li(fo) == B[l fo(z),y)] <0, i=1,.,m

= Typically the losses e}-(g, y) are not convex in .
= There is no straightforward way to project onto the feasibility set.

Example: Counterfactual Fairness.

?elﬁ%% E [—log[fa(x)],]

S. to E[DKL(fQ(QNZ, Z) H f@(f,pl(z))} <c, 1=1,...,m,

= The output is near-invariant to changes in the protected features z.
= |l.e, fo(x1,z9,Male, ... x4) should be c—similar to fy(x1,x2, Female, ... x4)

Learning in the Dual Domain

= At least one constraint is violated on 82% of the iterations.
= \We cannot stop the algorithm and expect to obtain a feasible solution.

Evolution of maximum constraint violation for two models with different capacity.
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= Convergence guarantees require randomization over {fs(¢)}_, A
See e.g, [Kearns, 2019; Cotter, 2019; Agarwal, 2018; Chamon, 2023]

The unparametrized problem

= Dual problem of (P,): Dy = maxy g Ieniél L(fo, \p) = Lol fo) + N L(f5))
S

~"

gp( p)

Dual Constrained Learning
1. Initialize: \(1)
2. fort=1,...,T do
3. Obtain fy(t) such that

fo(t) € argmin L( fy, A(t))
0O

= |[nvolves solving a sequence of
regularized ERM problems.

= Dual iterates A\, (t) move in ascent
directions of the concave function g,

= Dual convergence (stochastic):

. Update dual variabl
4 pdate dual variables limy o0 g2 (t) > D5 — O(1)) a5,

Ai(t 1) = | Ai(t)+n Li(fo(1)) N = PAC-C Learning Guarantees

= end for [Chamon. et al, 2023]

= Even though Dy - By < T is bounded, the sequence of primal iterates
{fa(t)}}_, need not approach the set of solutions of (P,).

Key Observation : (P,) is the parametrized version of a benign functional program

Py =min /ly(¢) s.to li(¢) <0, i=1,.,m, (P,)
oeF

= Fis a convex, compact subset of an L? space.
= (P,)is convex and has a unique optimal (and feasible) solution ¢* (sc, smooth)
= Richness of Fy : For all ¢ € F, there exists 8 € © such that: ||¢p — fol|z, < V.

E.g: F = { continuous functions on compact set } and
Fy = { 2-layer NN with K(v) hidden neurons }
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Near Optimal Solutions of Learning Problems

If the problem (P,) is sufficiently benign, for any fa(X\;) € F(Ay) we have:

Near-Feasibility:

16Cfa(A5) =€) loo < M [1 + w1rio(1 + [IA7]11)] \/Qm%(l +IAlh) =T

Near-Optimality:
By = Lo(foAp)) < (1+ [Apll) My + T+ [[A5]l1 Tz

Sensitivity of Py - Expressivity of 7 - Condition nums: £q (xo) and £ (k1)

= Primal iterates fy(\;) associated to dual solutions A7 approximate ¢* in terms
of objective and constraint values.

= D; approximates Py and provides approximate solutions for (By).
= Leads to a convergence guarantee for best primal iterates.
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» Last and randomized
predictors provide similar
accuracy and constraint
satisfaction.

Counterfactual Fairness

o

Randomized

S
Increasing expressivity of Fy

1o Maximum constraint violation for increasing model capacity.
C

) = Maximum constraint violation

— 6 decreases by up an order of

« e | magnitude as the richness of the
° TUITe LTS parametrization increases.
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