Near Optimal Solutions of Constrained Learning Problems

 (P_p)

Juan Elenter[†], Luiz F.O. Chamon^{*} and Alejandro Ribeiro[†]

University of Stuttgart *

Constrained Learning

Goal: Learn models that excel at their main task and also adhere to requirements.

$$\begin{aligned} P_p^{\star} &= \min_{\theta \in \Theta} \quad \ell_0(f_{\theta}) := \mathbb{E}_{(x,y)}[\tilde{\ell}_0(f_{\theta}(x), y)] \\ \text{s. to } \quad \ell_i(f_{\theta}) := \mathbb{E}_{(x,y)}[\tilde{\ell}_i(f_{\theta}(x), y)] \leq 0, \quad i = 1, .., m \end{aligned}$$

- Typically the losses $\tilde{\ell}_i(\hat{y}, y)$ are not convex in θ .
- There is no straightforward way to project onto the feasibility set.

Example: Counterfactual Fairness.

 $\min_{\theta \in \mathbb{T}^n} \mathbb{E}\left[-\log[f_{\theta}(x)]_y\right]$ s. to $\mathbb{E}\left[D_{\mathsf{KL}}(f_{\theta}(\tilde{x}, z) \mid f_{\theta}(\tilde{x}, \rho_i(z))\right] \leq c, \quad i = 1, \dots, m,$

- The output is *near-invariant* to changes in the protected features z.
- I.e., $f_{\theta}(x_1, x_2, Male, \dots, x_d)$ should be c-similar to $f_{\theta}(x_1, x_2, Female, \dots, x_d)$

Learning in the Dual Domain

 $D_p^{\star} = \max_{\boldsymbol{\lambda}_p \succeq 0} \min_{\boldsymbol{\theta} \in \Theta} L(f_{\boldsymbol{\theta}}, \boldsymbol{\lambda}_p) = \ell_0(f_{\boldsymbol{\theta}}) + \boldsymbol{\lambda}_p^T \ell(f_{\boldsymbol{\theta}}))$ • Dual problem of (P_p) :

Dual Constrained Learning

1: Initialize: $\lambda(1)$

2: for t = 1, ..., T do

Obtain $f_{\theta}(t)$ such that 3:

 $f_{\theta}(t) \in \arg \min L(f_{\theta}, \lambda(t))$

Update dual variables

$$\lambda_i(t+1) = \left[\lambda_i(t) + \eta \,\ell_i(f_\theta(t))\right]_+$$

5: end for

- Involves solving a sequence of regularized ERM problems.
- Dual iterates $\lambda_n(t)$ move in ascent directions of the concave function q_n
- Dual convergence (stochastic): $\lim_{t \to \infty} g_p^{\text{best}}(t) \ge D_p^{\star} - O(\eta) \quad \text{a.s.}$
- PAC-C Learning Guarantees [Chamon. et al, 2023]
- Even though $D_n^{\star} P_n^{\star} \leq \Gamma_1$ is bounded, the sequence of primal iterates ${f_{\theta}(t)}_{t=1}^{T}$ need not approach the set of solutions of (P_p) .

The issue of primal recovery

- At least one constraint is violated on 82% of the iterations.
- We cannot stop the algorithm and expect to obtain a feasible solution.

The unparametrized problem

Key Observation : (P_p) is the parametrized version of a benign functional program

$$P_u^{\star} = \min_{\phi \in \mathcal{F}} \quad \ell_0(\phi) \quad \text{s.to} \quad \ell_i(\phi) \le 0, \quad i = 1, .., m, \tag{P_u}$$

- \mathcal{F} is a convex, compact subset of an L^2 space.
- (P_u) is convex and has a unique optimal (and feasible) solution ϕ^* (sc, smooth)
- **Richness of** \mathcal{F}_{θ} : For all $\phi \in \mathcal{F}$, there exists $\theta \in \Theta$ such that: $\|\phi f_{\theta}\|_{L_{2}} < \nu$.

E.g: $\mathcal{F} = \{$ continuous functions on compact set $\}$ and $\mathcal{F}_{\theta} = \{ 2 \text{-layer NN with } K(\nu) \text{ hidden neurons } \}$

Your model needs to satisfy specific requirements? You should try constrained learning.

Yes, but under the right conditions, such as overparametrized NNs, last iterates work fine.

$$\mathcal{L}_{0}(f) \quad \{(\ell(f), \ell_{0}(f)) \mid f \in \mathcal{F} \} \\ \{(\ell(f_{\theta}), \ell_{0}(f_{\theta})) \mid \theta \in \mathcal{O} \} \\ \{(\ell(f_{\theta}), \ell_{0}(f_{\theta})) \mid \theta$$

Near Optimal Solutions of Learning Problems

If the problem (P_u) is sufficiently benign, for any $f_{\theta}(\lambda_n^{\star}) \in \mathcal{F}(\lambda_n^{\star})$ we have:

Near-Feasibility:

$$\begin{aligned} \|\ell(f_{\theta}(\lambda_{p}^{\star})) - \ell(\phi^{\star})\|_{\infty} &\leq M \left[1 + \kappa_{1}\kappa_{0}(1 + \|\lambda_{p}^{\star}\|_{1})\right] \sqrt{2m\frac{M\nu}{\mu_{0}}(1 + \|\lambda_{p}^{\star}\|_{1})} := \Gamma_{2} \end{aligned}$$
Near-Optimality:
$$|P_{p}^{\star} - \ell_{0}(f_{\theta}(\lambda_{p}^{\star}))| \leq (1 + \|\lambda_{p}^{\star}\|_{1}) M\nu + \Gamma_{1} + \|\lambda_{p}^{\star}\|_{1} \Gamma_{2}$$

Sensitivity of P_n^{\star} - Expressivity of \mathcal{F}_{θ} - Condition nums: $\ell_0(\kappa_0)$ and $\ell(\kappa_1)$

- Primal iterates $f_{\theta}(\lambda_n^{\star})$ associated to dual solutions λ_n^{\star} approximate ϕ^{\star} in terms of objective and constraint values.
- D_n^{\star} approximates P_n^{\star} and provides approximate solutions for (P_p) .
- Leads to a convergence guarantee for *best* primal iterates.

Empirical Performance of Last Iterates

Objective & Constraint Satisfaction

Increasing expressivity of \mathcal{F}_{θ}

 Maximum constraint violation decreases by up an order of

magnitude as the richness of the

parametrization increases.

satisfaction.

Last and randomized

predictors provide similar

accuracy and constraint

