

LLM-grounded Video Diffusion Models

Long Lian^{1*}, Baifeng Shi^{1*}, Adam Yala^{1,2+}, Trevor Darrell¹⁺, Boyi Li¹⁺

¹UC Berkeley ²UCSF *Equal contribution ⁺Equal advising

Our code is available at Ilm-grounded-videodiffusion.github.io

ICLR 2024

Text-to-video diffusion models can generate realistic videos

Yet they still suffer from insufficient prompt understanding

Prompt: A raccoon on a wooden barrel floating on a river

The raccoon is not on a wooden barrel?

- ZeroScope (baseline)

Prompt: A brown bear dancing with a yellow pikachu

The bear blends in with the pikachu?

- ZeroScope (baseline)

Prompt: A bird flying from the left to the right

The bird is flying towards the left?

- ZeroScope (baseline)

Improve the prompt understanding capabilities of text-to-video diffusion models **without** fine-tuning by introducing LLMs for grounding

Preliminaries: LLM-grounded Diffusion (LMD)

L. Lian, et al. LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models. TMLR 2024.

We know that LLMs can reason about spatial layouts

Do they understand motion as well?

Do LLMs Understand Spatiotemporal Dynamics?

User Text Prompt

A raccoon walking from the left of the scene to the right

Designing In-context Examples

User Text Prompt

A raccoon walking from the left of the scene to the right

In-context Examples

Gravity?

Perspective projection?

Elasticity?

In-context example for **gravity**: A woman walking from the left to the right and a man jumping on the right in a room

In-context example for **elasticity**: A red ball is thrown from the left to the right in a garden

Demonstrating Desirable Properties to LLMs

In-context example for **perspective** camera projection: The camera is moving away from a painting

LLM output: A ball is thrown out from the right

Balls bounce ✓

LLM output: A rock is thrown out from the right Rocks don't bounce ✓

(not mentioned in the prompt)

Ability comes from the weights, not instructions or examples!

LLM output: A paper airplane is thrown out from the right

Paper airplanes glides ✓

(not mentioned in the prompt)

Air friction is considered!

LLM output: A ball is thrown out from the right

Balls bounce ✓

LLM output: A rock is thrown out from the right

Rocks don't bounce 🗸

(not mentioned in the prompt)

LLM output: A paper airplane is thrown out from the right

Paper airplanes glides ✓

(not mentioned in the prompt)

LLM output: A **ball** is thrown out from the right

LLM output: A rock is thrown out from the right

LLM output: A *paper airplane* is thrown out from the right

No exhaustive examples needed!

Generalizing to Unseen Viewpoints

LLM output: A car viewed from the **back** is driving forward

LLM output: A car viewed from the **top** is driving forward

LLM output: A car viewed from the **side** is driving forward

Using LLMs to enhance the prompt understanding capabilities of text-to-video diffusion models

Using LLMs to Enhance Text-to-Video Diffusion Models

User Text Prompt

A raccoon walking from the left of the scene to the right

Using LLMs to Enhance Text-to-Video Diffusion Models

Using LLMs to Enhance Text-to-Video Diffusion Models

left of the scene to the right

DSL-grounded Video Generator

Dynamic Scene Layouts (DSL)

Generated Video

A raccoon on a wooden barrel floating on a river

ModelScope (Baseline)

Raccoon not on the barrel 🗙

LVD (Ours)

Spatial relationships 🗸

A brown bear dancing with a yellow pikachu

ModelScope (Baseline)

Mixing pikachu and bear 🗙

LVD (Ours)

Attribute Binding ✓

A bird flying from the left to the right (of the scene)

ModelScope (Baseline)

Incorrect flying direction 🗙

LVD (Ours)

Temporal dynamics 🗸

LVD Improves Text-Video Alignment

Detection-based Evaluation

Core idea: Text ⇒ Dynamic Scene Layouts ⇒ Video

LLM-grounded Video Diffusion Models

Long Lian^{1*}, Baifeng Shi^{1*}, Adam Yala^{1,2+}, Trevor Darrell¹⁺, Boyi Li¹⁺

¹UC Berkeley ²UCSF *Equal contribution ⁺Equal advising

Our code is available at Ilm-grounded-videodiffusion.github.io

ICLR 2024

