On Trajectory Augmentations for Off-Policy Evaluation

<u>Ge Gao*</u>, Qitong Gao†, Xi Yang‡, Song Ju*, Miroslav Pajic†, Min Chi* *North Carolina State University

†Duke University

‡IBM Research

Background

- Off-policy evaluation (OPE)
 - Estimates the performance of a <u>target</u> policy using historical data collected over a (different) <u>behavior</u> policy.
 - Safety: evaluate diverse interventions/policies

Background

- Offline trajectories: limited coverage of the entire state-action space
 - Hinder OPE methods to evaluate diverse policies
- Data augmentation: powerful for data enrichment; present effectiveness in varied tasks (e.g., supervised learning) [Deng09, Yoon19, Kamycki19, Iwana21, Xie20]
 - General supervised and unsupervised learning: ignore Markovian nature
 - RL policy optimization: different goals. Learning from high-reward regions of the stateaction space (policy optimization) vs both high- and low-reward regions (OPE)

Facilitate OPE with Augmented Trajectories (OAT)

Methods

Enrich state-action coverage of PSTs

- (i) The latent prior: represents distributions of initial latent space over PSTs
- (ii) The encoder: encodes MDP transitions into the latent space
- (iii) The decoder: reconstructs new PST samples

Objective: maximize the evidence lower bound (ELBO)

Methods

Experiment 1: Adroit

Adroit [Rajeswaran18]:

- 4 tasks: a simulated Shadow Hand robot is asked to hammer a nail (*hammer*), open a door (*door*), twirl a pen (*pen*), or pick up and move a ball (*relocate*)
- Deep OPE settings [Fu20]
- Behavior policy: behavior clone
- Target policies: 11 DAPG-based policies ranging from random to expert performance

Baselines and Evaluation Metrics

- Baselines:
 - RL-oriented: TDA [Park22], permutation, jittering, scaling [Laskin20, Liu20, Raileanu21]
 - Generative methods: TimeGAN [Yoon19], VAE [Barak22]
 - Time series-oriented: SPAWNER [Kamycki19], DGW [Iwana21]
 - VAE-MDP
- OPE methods considered:
 - WIS, FQE [Le19], DualDICE [Yang20], DR [Thomas16], MB [Zhang20]
- Evaluation Metrics: Absolute error, Regret@1, Regret@5, Spearman's rank correlation

Experiment 1: Results (100% human-involving datasets)

Averaging across 5 OPE methods and 4 tasks Results from each dataset averaging over 3 random seeds

Experiment 2: Intelligent Tutoring

Problem	Shortcuts
The families "a", "b" and "c" are invited to dinner. The probabilities that each family value is on the other families.	will come are 0.8, 0.6 and 0.9, respectively. In addition, each family's decision is independent of the
ind the probability that NONE of the families come.	
Define Event A: the family "a" comes; Event B: the family "b" comes; Event C: the fa	amily "c" comes.
ariables	Tutor History
(A) = 0.8	
(B) = 0.6 (C) = 0.9 (~A∩~B∩~C) = None****TARGET VARIABLE****	 Please enter the equation for "The definition of independent event on ~A∩~B∩~C." then press the Submit button:
quations	Response
or p(~A∩~B∩~C): The definition of independent event on ~A∩~B∩~C.	~ ∩ υ I A B C
	Input
	SUBMIT HELP A CALCULATOR

1,307 students over seven semesters (Prior 6 for training and evaluating, the following one for testing)

- States: 142 attributes
- Actions: 3 types of next problem
- Rewards: students' normalized learning gain
- Behavior policy: behavior clone.
- Target policy: 3 DQN-based policies and 1 instructor hand-designed policy.

Experiment 2: Results

Experiment 3: Sepsis Treatment

Sepsis treatment: challenging problem; fully offline evaluation

Our data: 221,700 visits of patients over two years. (80-20 split for training and testing)

- States: 15 continuous attributes (e.g., heart rate)
- Actions: 4. Binary options over antibiotic administration & oxygen assistance.
- Rewards: Obtain on the four stages of sepsis (infection (±5), inflammation (±10), organ failure (±20), and septic shock (±50)).
- Behavior policy: behavior clone
- Target policy: 5 DQN-policies

Experiment 3: Results

Summary

- OAT:
 - Improve the state-action coverage of offline trajectories
 - Potential-sub-trajectory mining; VAE-MDP
 - Superior performance across domains, including robotic control, education, and healthcare

Thank you!