

Lion Secretly Solves a Constrained Optimization: As Lyapunov Predict

Lizhang Chen*, Bo Liu*, Kaizhao Liang*, Qiang Liu,

Theoretical Exploration of Lion Optimizer We unveil the theoretical foundation of the Lion optimizer, which, despite its empirical success, lacked a clear theoretical basis. Our work establishes that Lion is not just an empirically effective optimizer but is theoretically grounded in solving a specific bound-constrained optimization problem.

> given $\beta_1, \beta_2, \lambda, \eta, f$ initialize $\theta_0, m_0 \leftarrow 0$ while θ_t not converged **do** $g_t \leftarrow \nabla_{\theta} f(\theta_{t-1})$ update model parameters $c_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $\theta_t \leftarrow \theta_{t-1} - \eta_t(\operatorname{sign}(c_t) + \lambda \theta_{t-1})$ update EMA of g_t $m_t \leftarrow \beta_2 m_{t-1} + (1 - \beta_2) g_t$ end while return θ_t

Extension to Lion-*K* **Algorithms** We extend the Lion optimizer to a broader family of Lion- *k* algorithms.

GPT-2

6k 8 Steps

Lion-/ — Lion-*l*_{1.2}

---- Lion-l_{1.4}

- Lion-l18 — Lion-l₂

Lion-l_{1.6}

The University of Texas at Austin

Lyapunov: Weight decay is a constraint Our study introduces a new Lyapunov function for Lion updates. This development is instrumental in demonstrating that Lion minimizes a general loss function f(x) while enforcing a bound constraint $||x||_{\infty} \leq 1/\lambda$ with λ as the weight decay coefficient.

• Main result: Lion-*K* solves

$$\min_{x} F(x) \coloneqq lpha f(x) + rac{\gamma}{\lambda} \mathcal{K}^{*}(\lambda x),$$

 \mathcal{K}^* is the convex conjugate of \mathcal{K} : $\mathcal{K}^*(x) = \sup_v (x^\top y - \mathcal{K}(y))$.

• When $\mathcal{K}^*(x)$ can take infinite values, it is a constrained optimization:

$$\min F(x), \qquad s.t. \quad x \in \mathrm{dom}\mathcal{K}^*,$$

where
$$\operatorname{dom} \mathcal{K}^* = \{x \colon \mathcal{K}^*(x) < +\infty\}.$$

Example:
$$\mathcal{K}(x) = \|x\|_1$$
, then $\mathcal{K}^*(x) = \begin{cases} 0 & \text{if } \|x\|_{\infty} \leq 1 \\ +\infty & \text{if } \|x\|_{\infty} > 1. \end{cases}$

Phase 2: Phase 1: Convergence Minimization to the Constrained Set Within the **Constrained Set**

Line ID	$\mathcal{K}(x)$	$ abla \mathcal{K}(x)$	$\min_x f(x) + \mathcal{K}^*(x)$
1	$ x _{1}$	$\operatorname{sign}(x)$	$\min f(x) \ s.t. \ \left\ x\right\ _{\infty} \leq 1$
2	$\left\ x\right\ _{p}$	$\frac{\operatorname{sign}(x) x ^{p-1}}{\ x\ _p^{p-1}}$	$\min f(x) \ s.t. \ \left\ x\right\ _q \le 1$
3	$\sum_i \max(x_i -e,0)$	$\operatorname{sign}(x)\mathbb{I}(x >e)$	$\min f(x) + e \ x\ _1 \ s.t. \ \ x\ _{\infty} \le 1$
4	$\sum_{i\leq i^{cut}} ig x_{(i)} ig $	$\operatorname{sign}(x)\mathbb{I}(x > \left x_{(i^{cut})}\right)$	$\min f(x) \ s.t. \ \ x\ _1 \le i^{cut}, \ \ x\ _{\infty} \le 1$
5	$\sum_i \mathrm{huber}_e(x_i)$	$\operatorname{clip}(x,-e,e)/e$	$\min f(x) + \frac{e}{2} \ x\ _2^2 \ s.t. \ \ x\ _{\infty} < 1$

Empirical Validation

Through extensive experiments, including on a toy example and large-scale tasks like ImageNet classification and language modeling, we empirically validate our theoretical findings. We observe that different choices of ϕ in Lion- ϕ influence the optimization behavior and performance. confirming our theoretical predictions.

