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Summary of Contributions
• We first introduce the reward model to Semi-supervised

Learning (SSL) with a well-defined reward score as the
pseudo-label quality indicator (for Pseudo-Labeling).

• A plugin-and-play semi-supervised reward framework 
is designed to filter out high-quality pseudo labels for 
classification and regression SSL tasks.

• SemiReward shows significant performance gains and 
faster convergence speeds on 13 standard SSL datasets 
across three modalities applying up SSL algorithms.

Quality Indicator: Reward Score

• Comparison experiments upon existing SSL methods
with 13 classification and regression datasets of audio,
natural language, vision modalities based on USB
codebase, reporting top-1 error rate and speed-up times.Figure 2. Illustration of SSL training paradigm, where blue lines denote pseudo-

labeling pipeline and red lines denote gradient propagation, and (b) is SemiReward.

Two-stage SSL training with a schedule 𝑇 and a Generator
𝒢 𝑥 = 𝑦! alternatively optimizing ℒ"#$ = ℒℛ + ℒ𝒢.

SemiReward Learning Framework
Figure 3. How ℛ works illustrated by reward scores v.s. top-1 Acc on CIFAR-100 (400).

Experiment Results

• Ablation of losses and training scheduler / possesses of
the rewarder model on CIFAR-100 (400 labels).
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Table 1: Top-1 error rate (%), performance gain, and training speedup times on nine SSL classifica-
tion datasets with CV, NLP, and Audio modalities in various label settings.

Domain Dataset (Setting)
Pseudo Label FlexMatch SoftMatch/FreeMatch Average

Base +SR Base +SR Base +SR Gain Speed.

Audio

ESC-50 (250) 38.42±0.85 33.33±0.97 36.83±0.51 32.58±0.51 32.71±0.82 29.71±0.64 +4.11 ⇥1.73
ESC-50 (500) 28.92±0.24 27.65±0.32 27.75±0.41 25.92±0.31 29.07±1.27 25.98±0.49 +2.06 ⇥2.07

FSDnoisy18k (1773) 34.60±0.55 33.24±0.82 26.29±0.17 25.63±0.28 29.39±1.83 26.10±0.83 +1.77 ⇥1.30
UrbanSound8k (100) 37.74±0.96 36.47±0.65 37.88±0.46 36.06±0.93 37.68±1.82 34.97±1.02 +1.93 ⇥1.70
UrbanSound8k (400) 27.45±0.96 25.27±0.65 23.78±0.46 23.45±0.93 23.78±0.13 19.39±0.33 +2.30 ⇥1.08

NLP

AG News (40) 15.19±3.07 13.90±0.21 13.08±3.94 12.60±0.69 11.69±0.12 10.67±0.90 +0.93 ⇥2.77
AG News (200) 14.69±1.88 12.10±0.58 12.08±0.73 11.05±0.14 11.75±0.17 10.02±0.82 +1.78 ⇥2.30

Yahoo! Answer (500) 34.87±0.50 35.08±0.40 34.73±0.09 33.64±0.73 33.02±0.02 30.92±0.90 +0.99 ⇥1.80
Yahoo! Answer (2000) 33.14±0.70 32.50±0.42 31.06±0.32 29.97±0.10 30.34±0.18 29.11±0.15 +0.99 ⇥3.53

Yelp Review (250) 46.09±0.15 42.99±0.14 46.09±0.15 42.76±0.33 43.91±0.19 42.68±0.12 +2.55 ⇥1.40
Yelp Review (1000) 44.06±0.14 42.08±0.15 40.38±0.33 37.58±0.19 40.43±0.12 38.43±0.14 +2.26 ⇥1.01

CV

CIFAR-100 (200) 32.78±0.20 31.94±0.57 25.72±0.35 23.74±1.39 21.07±0.72 20.06±0.41 +1.28 ⇥1.04
CIFAR-100 (400) 25.16±0.67 23.84±0.20 17.80±0.57 17.59±0.35 15.97±0.24 15.62±0.71 +0.63 ⇥1.57

STL-10 (40) 20.53±0.12 17.37±0.47 11.82±0.51 10.20±1.11 17.51±0.61 9.72±0.62 +4.19 ⇥1.07
STL-10 (100) 11.25±0.81 10.88±1.48 7.13±0.20 7.59±0.57 8.10±0.35 7.10±1.39 +0.30 ⇥1.11

Euro-SAT (20) 25.25±0.72 23.65±0.41 5.54±0.16 4.86±1.00 5.51±0.54 4.22±0.34 +1.19 ⇥1.03
Euro-SAT (40) 12.82±0.81 8.33±0.33 4.51±0.24 3.88±0.69 5.46±0.34 3.94±0.71 +2.21 ⇥1.13

(c) For audio classification, we study the applications of SSL on 3 datasets, including Urban-
Sound8k (Salamon et al., 2014), ESC-50 (Piczak, 2015), and FSDNoisy18k (Fonseca et al.,
2019), where Hubert (Hsu et al., 2021) played the role of the pre-trained backbone.

Comparison Methods and Task Settings for Regression. To demonstrate the versatility of our ap-
proach, we extend our investigation to regression tasks alongside our primary focus. Specifically, we
select Pseudo Label and its counterparts, namely the ⇧ model (Rasmus et al., 2015), CRMatch (Fan
et al., 2021), and Mean Teacher (Tarvainen & Valpola, 2017), as our baseline methods. We then eval-
uate their performance in comparison to the integration of SemiReward on 3 regression datasets. The
first two datasets, IMDB-WIKI (Rothe et al., 2018) and AgeDB (Moschoglou et al., 2017) with only
1% labeled data, perform face age regression. Additionally, we conduct a rotation angle estimation
task using our custom RCF-MNIST dataset (Yao et al., 2022), featuring a more complex CIFAR-
10 (Krizhevsky et al., 2009) background to align the samples closely to natural images and make
the task more difficult. Experimental results are assessed based on two standard regression metrics:
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).

SemiReward Implementations. To train the rewarder R and generator G, we apply Adam (Kingma
& Ba, 2014) optimizer with a fixed learning rate of 0.0005 in two-stage training for all tasks. We
set the scheduler’s T to 10% of total SSL training iterations. During the inference process of R, we
use the average reward score as the threshold ⌧ to filter pseudo labels dynamically. More specific
hyperparameters are provided in Appendix A.2.

4.2 COMPARISON RESULTS ON SEMI-SUPERVISED BENCHMARKS

Results on Classification. Table 1 demonstrates the substantial performance improvements
achieved by plugging SemiReward into representative SSL algorithms across diverse modalities,
with notable impacts in audio-related tasks. When augmenting Pseudo Label with SemiReward, it
outperforms SoftMatch on UrbanSound8k with 100 labeled instances and achieves an average per-
formance gain of 4.11% on ESC-50 with 250 labels. This enhancement effectively guides basic
models, e.g., Pseudo Label, toward more favorable local minima. The inclusion of SemiReward
consistently expedites model convergence, as evidenced by the “avg. speedup” column in Table 1,
with acceleration factors ranging from ⇥1.5 to ⇥3.53 in most cases. Total training times are shown
in C.1. Meanwhile, the early stopping technique reduces training costs while maintaining desired
performance, representing a valuable trade-off. Furthermore, using SemiReward can reduce train-
ing times and achieve lower error rates on Imagenet, as shown in Table 3. Notably, FlexMatch,
in conjunction with SemiReward, surpasses previous SOTA methods, such as Freematch and Soft-
match. The basic method with consistency regularization, FixMatch, also demonstrates substantial
performance improvements when combined with SemiReward.

Results on Regression. We compare CRMatch, Mean Teacher, ⇧ model, Pseudo Label, and Pseudo
Label added to SemiReward on RCF-MNIST, IMDB-WIKI, and AgeDB. The results are reported
in Table 2. From the results of RMSE and MAE, SemiReward has great gain. Especially on RCF-
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Table 2: RMSE and MAE, performance gain, and training speedup
times on three SSL regression datasets with 1% labels.

Method RCF-MNIST IMDB-WIKI AgeDB
RMSE MAE RMSE MAE RMSE MAE

Supervised 62.02±0.34 22.81±0.07 14.92±0.14 11.52±0.09 14.51±0.13 11.77±0.27
Pseudo Label 62.72±0.11 23.07±0.05 14.90±0.22 11.44±0.53 14.76±0.12 11.71±0.53
⇧-Model 63.24±0.63 23.54±0.63 14.80±0.12 11.35±0.12 14.76±0.14 11.92±0.09
MeanTeacher 63.44±0.32 23.25±0.13 15.01±0.64 11.66±0.32 14.99±0.99 12.07±0.48
CRMatch 101.66±0.84 85.45±0.72 22.42±0.23 18.77±0.43 20.42±0.10 17.11±0.49
PseudoLabel+SR 61.71±0.34 22.45±0.05 14.80±0.53 10.91±0.12 14.01±0.12 10.77±0.22
Gain -0.90 -0.99 -0.10 -0.53 -0.75 -0.94

Table 3: Top-1 error rate (%),
performance gain, and train-
ing speedup times on ImageNet
with 100 labels per class.

Method Top-1 Gain Speedup
FixMatch 43.66 +0.00 ⇥1.00
FixMatch+SR 41.72 +1.94 ⇥1.98
FlexMatch 41.85 +0.00 ⇥0.00
FreeMatch 40.57 +1.28 ⇥1.50
SoftMatch 40.52 +1.33 ⇥1.46
FlexMatch+SR 40.36 +1.49 ⇥2.35

MNIST dataset, SemiReward can yield lower RMSE to 0.9 and MAE to 0.99, which is even better
than the supervised baseline. On the contrary, CRMatch performs poorly on various data sets,
inferior to other SSL baselines, indicating the strong effect of confirmation bias.

4.3 ANALYSIS AND ABLATION

This section presents experimental analysis to demonstrate the functionality of SemiReward.

Table 4: Ablation of rewarder
training. We search the stage-2
start timing T in the two-stage
scheduler and losses for Eq. (7)
and Eq. (8) on CIFAR-100 (400).

Scheduler Loss Error
T MSE BCE (%)

0% X 19.65
5% X 17.89
10% X 16.65
10% X 17.66
15% X 16.82

Contribution of Each Component. We do extensive ablation
experiments and place them in Appendix B and obtain the fol-
lowing observations: (i) The number of MLP layers has little
impact on the model’s performance. The key lies in the design
of the attention mechanism. (ii) Table 4 shows that replacing
the used MSE (`2) loss with BCE loss will make it difficult for
the rewarder to converge and achieve poor scoring performance.
Also, we find a scheduler that exceeds the reasonable setting
range will cause the rewarder to be trapped in the wrong direc-
tion. The empirical starting time T can be 10%. (iii) Compar-
ing the training objectives of several models, we find that cosine
similarity helps form the correspondence between pseudo labels
and scores. (iv) Using the mean of reward scores to dynamically
adjust the threshold ⌧ performs much better than a fixed value in Figure A1.

Table 5: Analysis of parameters and
computational overhead (MFlops) of the
student model, Rewarder, and Generator.

Model Params. (M) FLOPs (M)
Student Model 21.7 607.9

Rewarder 0.140 0.198
Generator 0.137 0.139
Proportion 1.28% 0.056%

Simplicity of SemiReward. Table 5 shows SemiRe-
ward is very streamlined regarding parameters and
FLOPs based on ViT-S-P4-32 on the CIRFA-100
dataset. Compared with the student model, our model
accounts for a very low proportion of the training pro-
cess, only requiring 1.28% and 0.056% extra parame-
ters and FLOPs and computing two times forward and
one times backward propagation in each iteration.

Regression Tasks with SemiReward. Existing consistency regularization methods are unsuitable
for regression tasks, with CRMatch being the only open-source alternative. However, CRMatch
consistently yields subpar results, primarily due to confirmation bias (Arazo et al., 2020). Simulta-
neously, we note that in imbalanced regression datasets like IMDB-WIKI and AgeDB, SemiReward
encounters challenges in enhancing the selection of superior pseudo-labels, hampering improved
model convergence. Conversely, in tasks with balanced data distributions, such as rotation angle
estimation, SemiReward demonstrates notably superior performance. This phenomenon may be
attributed to the inherent difficulty in accurately labeling data points located at the distribution’s
extremes in imbalanced datasets, leading to partial performance degradation in such scenarios.

5 RELATED WORK

Pseudo Label (Lee et al., 2013) pioneered the generation of artificial labels for unlabeled data with
models trained on labeled data, followed by consistency regularization (Samuli & Timo, 2017) aim-
ing to ensure consistent predictions for different views of the same data, which are two foundational
techniques in SSL. However, confirmation bias (Arazo et al., 2020; Chen et al., 2022a) caused by
inaccurate pseudo labels limits SSL performances. Subsequent works mainly address this problem
from three aspects: (i) selecting high-quality pseudo labels, (ii) generating high-quality pseudo la-
bels, (iii) enhancing the tolerance of inaccurate labels. View Appendix D for detailed backgrounds.
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quality labels are selected, causing the training process of the student model trapped in relatively
low accuracy.

B.6 THRESHOLD FOR SEMIREWRD

In Appendix A1, we ablate the thresholding strategy for SemiReward, which compares the average
thresholding with several fixed threshold ⌧ settings, including 0.5, 0.7, and 0.9. The red dotted line
denotes the result of the average strategy. In the context of reward score threshold-based filtering, it
becomes evident that the fixation of this threshold engenders a multitude of challenges. During the
training of SSL, employing a static threshold for pseudo-label selection poses prominent challenges
(Zhang et al., 2021). During the early epochs of training, a model is still in its nascent state of un-
derfitting and unstable. Setting a high threshold during these phases can inadvertently discard a sub-
stantial portion of potentially informative pseudo-labels. Such an action can curtail the model’s abil-
ity to learn from these early indicators, potentially decelerating the overall convergence trajectory.

Figure A1: Thresholding ⌧ for re-
ward scores with adding SemiRe-
ward to FlexMatch on CIFAR-100
with 400 labels.

Conversely, as training progresses and the model refines its
internal representations, a static low threshold may fall short
in filtering out subpar-quality pseudo-labels. This introduces
the hazard of the model overfitting these less reliable markers,
jeopardizing its generalization capabilities. We advocate for a
dynamic thresholding strategy grounded in averaging princi-
ples to address these challenges. Instead of adhering to a rigid
threshold, our approach recalculates the threshold value within
each mini-batch, considering the current quality distribution
of the pseudo-labels. Such a mechanism ensures consistent
retention of high-quality pseudo-labels throughout the train-
ing lifespan while effectively sidelining low-quality ones. Our
empirical evaluations underline the efficacy of this method, not
only amplifying the model’s rate of convergence but also bol-
stering its performance on out-of-sample evaluations.

Method FlexMatch+SR
Coupled Training 82.12 (⇥1.0)
+Gradient Ascent 82.23 (⇥1.2)
Decoupled Training 83.11 (⇥2.2)
+Gradient Ascent 83.25(⇥1.7)

Table A10: Analysis of two training
processes and the gradient accent of
pseudo labels on CIFAR-100 (400
labels). Top-1 accuracy (%) and the
training speedup times are reported.

(a) Coupled v.s. Decoupled (b) Pseudo labels v.s. Fake labels
Figure A2: Analysis of SR training on CIFAR-100 with Flex-
Match. The mean and std of top-1 accuracy are plotted for (a)
pseudo labels for the coupled and decoupled training and (b)
pseudo and fake labels in the decoupled training.

B.7 DECOUPLING OF STUDENT AND REWARDER TRAINING

As discussed in Sec. 3.2, we decouple the training of the student model and the rewarder by intro-
ducing the Generator and two-stage training pipeline to prevent confirmation bias. Here, we analyze
the two training processes to verify whether the decoupled two-stage training with the Generator is
an essential design. The first type of training process is to optimize the student and the Rewarder
together without the Generator, where the teacher model generates candidate pseudo labels for the
student and the Rewarder, which we call coupled training. Contrastively, the proposed two-stage
training is the decoupled training. There are two reasons for decoupling the training process of the
student and the Rewarder. Firstly, the Rewarder requires diverse pseudo-labels as the training data
to fit the ground truth reward scores rather than deterministic high-performance labels. Secondly,
the student and the Rewarder might suffer from confirmation bias. To further enhance the gener-
ated pseudo labels for the student training, we also designed a gradient ascent trick. Given selected
reliable pseudo labels, we can modify them to generate more high-quality pseudo labels (or fake
labels) by maximizing the reward scores with a step of gradient ascent in the inference process of
the Rewarder.
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Table 2: RMSE and MAE, performance gain, and training speedup
times on three SSL regression datasets with 1% labels.

Method RCF-MNIST IMDB-WIKI AgeDB
RMSE MAE RMSE MAE RMSE MAE

Supervised 62.02±0.34 22.81±0.07 14.92±0.14 11.52±0.09 14.51±0.13 11.77±0.27
Pseudo Label 62.72±0.11 23.07±0.05 14.90±0.22 11.44±0.53 14.76±0.12 11.71±0.53
⇧-Model 63.24±0.63 23.54±0.63 14.80±0.12 11.35±0.12 14.76±0.14 11.92±0.09
MeanTeacher 63.44±0.32 23.25±0.13 15.01±0.64 11.66±0.32 14.99±0.99 12.07±0.48
CRMatch 101.66±0.84 85.45±0.72 22.42±0.23 18.77±0.43 20.42±0.10 17.11±0.49
PseudoLabel+SR 61.71±0.34 22.45±0.05 14.80±0.53 10.91±0.12 14.01±0.12 10.77±0.22
Gain -0.90 -0.99 -0.10 -0.53 -0.75 -0.94

Table 3: Top-1 error rate (%),
performance gain, and train-
ing speedup times on ImageNet
with 100 labels per class.

Method Top-1 Gain Speedup
FixMatch 43.66 +0.00 ⇥1.00
FixMatch+SR 41.72 +1.94 ⇥1.98
FlexMatch 41.85 +0.00 ⇥0.00
FreeMatch 40.57 +1.28 ⇥1.50
SoftMatch 40.52 +1.33 ⇥1.46
FlexMatch+SR 40.36 +1.49 ⇥2.35

MNIST dataset, SemiReward can yield lower RMSE to 0.9 and MAE to 0.99, which is even better
than the supervised baseline. On the contrary, CRMatch performs poorly on various data sets,
inferior to other SSL baselines, indicating the strong effect of confirmation bias.

4.3 ANALYSIS AND ABLATION

This section presents experimental analysis to demonstrate the functionality of SemiReward.

Table 4: Ablation of rewarder
training. We search the stage-2
start timing T in the two-stage
scheduler and losses for Eq. (7)
and Eq. (8) on CIFAR-100 (400).

Scheduler Loss Error
T MSE BCE (%)

0% X 19.65
5% X 17.89
10% X 16.65
10% X 17.66
15% X 16.82

Contribution of Each Component. We do extensive ablation
experiments and place them in Appendix B and obtain the fol-
lowing observations: (i) The number of MLP layers has little
impact on the model’s performance. The key lies in the design
of the attention mechanism. (ii) Table 4 shows that replacing
the used MSE (`2) loss with BCE loss will make it difficult for
the rewarder to converge and achieve poor scoring performance.
Also, we find a scheduler that exceeds the reasonable setting
range will cause the rewarder to be trapped in the wrong direc-
tion. The empirical starting time T can be 10%. (iii) Compar-
ing the training objectives of several models, we find that cosine
similarity helps form the correspondence between pseudo labels
and scores. (iv) Using the mean of reward scores to dynamically
adjust the threshold ⌧ performs much better than a fixed value in Figure A1.

Table 5: Analysis of parameters and
computational overhead (MFlops) of the
student model, Rewarder, and Generator.

Model Params. (M) FLOPs (M)
Student Model 21.7 607.9

Rewarder 0.140 0.198
Generator 0.137 0.139
Proportion 1.28% 0.056%

Simplicity of SemiReward. Table 5 shows SemiRe-
ward is very streamlined regarding parameters and
FLOPs based on ViT-S-P4-32 on the CIRFA-100
dataset. Compared with the student model, our model
accounts for a very low proportion of the training pro-
cess, only requiring 1.28% and 0.056% extra parame-
ters and FLOPs and computing two times forward and
one times backward propagation in each iteration.

Regression Tasks with SemiReward. Existing consistency regularization methods are unsuitable
for regression tasks, with CRMatch being the only open-source alternative. However, CRMatch
consistently yields subpar results, primarily due to confirmation bias (Arazo et al., 2020). Simulta-
neously, we note that in imbalanced regression datasets like IMDB-WIKI and AgeDB, SemiReward
encounters challenges in enhancing the selection of superior pseudo-labels, hampering improved
model convergence. Conversely, in tasks with balanced data distributions, such as rotation angle
estimation, SemiReward demonstrates notably superior performance. This phenomenon may be
attributed to the inherent difficulty in accurately labeling data points located at the distribution’s
extremes in imbalanced datasets, leading to partial performance degradation in such scenarios.

5 RELATED WORK

Pseudo Label (Lee et al., 2013) pioneered the generation of artificial labels for unlabeled data with
models trained on labeled data, followed by consistency regularization (Samuli & Timo, 2017) aim-
ing to ensure consistent predictions for different views of the same data, which are two foundational
techniques in SSL. However, confirmation bias (Arazo et al., 2020; Chen et al., 2022a) caused by
inaccurate pseudo labels limits SSL performances. Subsequent works mainly address this problem
from three aspects: (i) selecting high-quality pseudo labels, (ii) generating high-quality pseudo la-
bels, (iii) enhancing the tolerance of inaccurate labels. View Appendix D for detailed backgrounds.
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out of range is more likely to produce poor results. This is because premature means that the pre-
training phase has not been completed, causing problems with the score mapping during the initial
screening and causing subsequent online training to learn worse score targets. Too late will make the
model converge slowly and easily fall into local optimality, making it difficult to achieve favorable
performance in the early stage.

Table A7: Analysis of selecting
pseudo labels on CIFAR-100 (400 la-
bels) with or without decay. Top-1 ac-
curacy (%) and the training speedup
times are reported.

Method FlexMatch
Baseline 82.12 (⇥1.0)
+Decay 79.42 (⇥1.4)
Semireward 82.90 (⇥2.7)
+Decay 83.25(⇥2.2)

For the screening phase, we employed a multi-forward
approach to generate multiple pseudo-labels for a given
dataset, facilitating iterative screening. The parameter de-
cay denotes the frequency of forward passes. In the sub-
sequent stages, we introduced an annealing strategy, dy-
namically adjusting decay throughout the training process.
Specifically, we divided the total training steps by the cur-
rent iteration, rounding up the result as the updated num-
ber of forward passes. To underscore that the performance
enhancement of our algorithm extends beyond the impact
of decay alone, we augmented the baseline algorithm with
multiple forward passes and conducted comparative experiments A7. Our findings revealed that the
algorithm achieves peak performance when decay and reward-based screening collaborate.

B.4 LOSS FOR SEMIREWRD

In the ablation experiment, we not only compared the results of replacing MSE (`2) loss with BCE
loss. We also changed the algorithm of SemiReward total loss. Initially, two independent losses were
used for gradient backpropagation, but we also considered the impact of weighting on the overall
model training. We conducted ablation experiments on CIRFA-100 with 400 labels to compare their
difference and find that the proposed MSE loss yields the best results.

Table A8: Analysis of the loss types and loss
weight for the proposed reward loss.

MSE BCE Weighted Accuracy(%) iteration
X � 83.35 100352 iters
X 0.1 80.99 204799 iters
X 0.5 81.25 204799 iters
X 0.9 79.85 204799 iters

X � 82.34 153600 iters
X 0.1 80.02 196608 iters
X 0.5 81.11 194559 iters
X 0.9 81.01 196608 iters

As shown in Table A8, we can find that the
weighted loss is more negative for model train-
ing, which may cause the rewarder to not con-
verge and introduce many low-quality labels
into the training process. Therefore, the impor-
tance of independent loss design can be seen
here. On the other hand, BCE loss is also diffi-
cult to train the rewarder to convergence. This
may be because our scoring model essentially
follows the idea of regression tasks.

B.5 TARGET FOR SEMIREWRD

As for the reward score, i.e., the target of the rewarder model, its distance measurement is essential.
We pursue that the scored pseudo-standards can be distributed evenly on the accuracy-score mapping
with favorite properties mentioned in Sec. 3.1. Therefore, we constructed different score labels using
different distance measures to train the rewarder and inferred why cosine similarity is an acceptable
distance measure. We conducted ablation experiments on CIRFA-100 with 400 labels to compare
the differences. As analyzed of Sec. 3, it can be seen that the divergence method represented by JS

Table A9: Analysis of the impact of training scoring targets calculated using different distance metric
methods on the model, including using L2 distance and cosine similarity or not in SemiReward.

Cosine Similarity L2 Distance Accuracy(%) iteration
X 83.35 100352 iters

X 80.23 202751 iters
� � 82.25 204799 iters

divergence has serious failures in the thinking of the calibration curve. This is because JS divergence
may cause the scores of some tags to be too concentrated so that bad labels with similar scores will
be selected as reliable labels. In Table A9, we found that the target score derived from the negative
L2 distance will cause the filtering ability of the rewarder to decline rapidly so that many low-
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+3.7 acc. 1.7× speed

(a) CV: Euro-SAT (20)

   
+1.9 acc. 2.0× speed

(b) NLP: Yahoo! Answer (2000)

+2.5 acc. 1.7× speed

(c) Audio: ESC-50 (250)
Figure 2: Top-1 accuracy v.s. training iterations (⇥2048) on SSL datasets (the number of used
labels) of three modalities. Employing SemiReward with SOTA SSL methods produces +1.9⇠3.7
performance gains with at least 1.7 times fewer training iterations compared to the baseline. We
apply early-stop when the validation performance reaches the peak.

1 INTRODUCTION

In the past decades, deep learning (DL) has made great progress in various applications with differ-
ent modalities (He et al., 2016; Devlin et al., 2018; Dong et al., 2018; Li et al., 2024). However, most
tasks are in a supervised learning (SL) manner that requires manually labeling data, which is lim-
ited in quantity and labor-exhaustive. To extend SL with massive unlabeled data, semi-supervised
learning (SSL) exploits the information of unlabeled data with limited labeled data (Tarvainen &
Valpola, 2017; Sohn et al., 2020) in the self-training paradigm of pseudo-labeling (Lee et al., 2013),
i.e., training models with unlabeled data and pseudo labels assigned by models’ predictions.

As a widely used technique, the main problem of SSL is how to generate accurate pseudo labels

without or with tolerable effects of confirmation bias (Arazo et al., 2020), i.e., overfitting to incorrect
pseudo labels from teacher models. There were three main strands of research, aiming at obtaining
high-quality pseudo labels and a high sampling rate while being capable of various tasks and scenar-
ios. Firstly, mainstream methods utilize threshold-based pseudo labeling (Sohn et al., 2020; Zhang
et al., 2021; Kim et al., 2022; Wang et al., 2022b) with ad-hoc or complex hand-crafted strategies
to select high-quality pseudo labels. However, these algorithms are predefined and task-specific,
i.e., they are designed for classification tasks but cannot handle more challenging regression tasks.
The second strand introduces pre-trained teacher models (Zhou & Li, 2010; Xie et al., 2020b) to
generate high-quality pseudo labels, which require extra computational cost (e.g., double training
times (Pham et al., 2021)) or suffer from confirmation bias (Yalniz et al., 2019). The third line
explores consistency regulaizations (Xie et al., 2020a; Sohn et al., 2020; Li et al., 2021) to prevent

confirmation bias of inaccurate pseudo labels, e.g., optimizing the consistency loss with weak-strong
augmentation, which only work for specific modalities with prior augmentations. Therefore, none
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and regression tasks. Then, we propose a Semi-supervised Reward framework (SemiReward) that
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predicts calibrated reward scores to select high-quality pseudo labels with a high sampling rate to
boost SSL training. We conduct comparison experiments on SSL benchmarks with three modalities
and two task types, verifying that SemiReward improves both general and modern SSL algorithms
in performance and convergence speeds. Our main contributions are three folds:

• From a fresh perspective, we introduce the reward score to evaluate pseudo-label qualities
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• We propose a general and pluggable SemiReward framework that selects high-quality
pseudo labels with reward scores. A two-stage training pipeline and a generator network
are designed to train the rewarder online with negligible extra cost.

2

Figure 1. Top-1 Acc v.s. training iterations (×2048) on SSL datasets of three modalities.
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Figure 3: Illustration of SSL training paradigm, where blue lines denote pseudo-labeling pipeline
and red lines denote gradient propagation. (a) Confidenced-based label selection strategy and strong-
weak augmentations for consistency are task-specific and modality-specific (requiring ad-hoc aug-
mentations). (b) Rewarder R is a plug-and-play label selection module for general SSL scenarios.

• Extensive experiments on 13 datasets validate that SemiReward markedly increases per-
formance and convergence speeds of popular SSL methods in classification and regression
tasks. We also empirically verify the reliability of reward scores and designed modules.

2 PRELIMINARY
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truth label, where C is the label dimension, and the model fS(·) learns to predict fS(x) = y 2 RC .
As for C-class classification, one-hot encoding is adopted for yl while converting the model output
to argmaxp(y). To utilize all training data, the general SSL training pipeline with pseudo-labeling
contains three steps: (a) Pseudo-label generation. Given a teacher model fT (·) that is well-trained
on DL, it can generate pseudo-labels y

u = fT (xu) for DU . (b) Pseudo-label selection. High-
quality pseudo labels D̂U = {ŷ

u
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where !(·) denotes stochastic data augmentations and H(·, ·) is the loss function used for the SL
task, such as cross-entropy and `1 loss for classification and regression tasks. Similarly, given a
mini-batch of BU unlabeled data, taking popular consistency regularization frameworks (Sohn et al.,
2020) as an example, the unsupervised loss is
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where ⌦(xu
i ) represents the strong augmented unlabeled data. As shown in Figure 3(a), the con-

sistency regularization framework usually has three design aspects: (i) fT and fS share the same
network architecture and parameters of fS are updated to fT by copying or exponential moving av-
erage (EMA). (ii) For most consistency-based SSL methods, a hand-crafted I(·, ·) requires predicted
classification confidence to distinguish reliable labels. (iii) Since the teacher fT is more reliable
than the student fS , the consistency that between fT and fS is introduced by constructing sample
pairs (!(xu

i ),⌦(x
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i )) with strong-weak augmentations proposed by UDA (Xie et al., 2020a) and

optimizing consistency through LU .

Breaking Through Limitations of Confidence-based Label Selection. Existing label selection
strategies in step (ii) only use y

u or the confidence p
u to evaluate pseudo labels in hand-crafted

policies, which cannot guarantee the quality and stability of D̂U . Meanwhile, the designed steps
(ii) and (iii) limit the task and modality generalities of the pseudo-labeling pipeline. To tackle
these problems, we parameterize I(·, ·) as a lightweight rewarder model R(xu

, y
u) = r, where a

reward score r 2 [0, 1] represents the label quality and is defined in Sec. 3.1. In Figure 3(b), the
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u, rather than
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where Laux denote training losses of the rewarder R with generator G discussed in Sec. 3.2.
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3 SEMIREWARD

Here, we introduce SemiReward for high-quality pseudo-label selection in general SSL tasks. In
Sec. 3.1, we first define reward score as a pseudo-label evaluation metric and approximate it by a
rewarder model. Then, Sec. 3.2 describes how to learn the rewarder through a two-stage pipeline.

3.1 MEASUREMENT OF LABEL QUALITY

Unlike popular ranking loss (Ouyang et al., 2022) in reinforcement learning (RL) (Schulman et al.,
2017), we define a continuous metric of pseudo-label quality based on label similarity.

Definition 3.1 (Reward Score). The reliability of a pseudo label yu of data x is measured by label
similarity S(·, ·) with its ground truth label yl, which can also be approximated by a rewarder R(·, ·):

r(yu, yl) = S(yu, yl) ' R(x, yu) 2 [0, 1]. (4)
The ideal reward score should satisfy monotonicity and smoothness (not increasing dramatically)
and strive to meet the trend of calibration curve (Clark, 1975), where a lower reward confidence
indicates poorer label quality. Therefore, we define the label similarity based on cosine similarity.

Definition 3.2 (Label Similarity). Given vectorized label y 2 RC , the label similarity between yi

and yj is defined as scaled cosine similarity:

S(yi, yj) =
yi · yj

2 kyik kyjk
+ 0.5 2 [0, 1]. (5)

Figure 4(a) verifies the properties of r(yu, yl) by changing the label similarity metrics to negative
L2 distance and JS-divergence, and it shows that Eq. (5) can be the better choice.

(a) Various reward similarities (b) Attention module in Rewarder (c) MLP module in Rewarder
Figure 4: How rewarder works illustrated by reward scores v.s. top-1 accuracy on CIFAR-100
(400 labels). (a) Analysis of alternative reward similarities; (b) Ablation of cross-attention module
in R, which is the vital component to learn calibrated reward scores; (c) Ablation of MLP layers.

(a) Reward score v.s. MAE (b) MAE v.s. training steps
Figure 5: Credible reward scores ensure the stable op-
timization of the student model, while raw pseudo la-
bels in general SSL methods gravely misled the student
for regression task on RCF-MNIST (1% labels).

To support both classification and regres-
sion tasks, we determine the encoding
strategies to ensure that used labels are
in vector format. This paper mainly dis-
cusses the cases of one-hot classification
or single attribute regression. Given a raw
scalar label, it can be encoded in “one-hot”
format for classification. As for a raw re-
gression label y 2 [0, C], we propose a
soft one-hot encoding that equally divides
the scalar into C bins and sets the k-th po-
sition in the vector to 1 + (y � k), where
k  y < k+1, while other positions are set to 0. Afterward, we verify Eq. (4) with regression tasks
in Figure 5 and find that it can serve as a reliable metric and reduce the confirmation bias of raw
pseudo labels. As for multi-label scenarios (Lin et al., 2017), we first encode raw labels for each
task separately and then concatenate them as the final labels.

Rewarder. As defined in Eq. (4), R(·, ·) tries to solve a regression problem: the model should
extract semantic information of yl from x

u and tell the similarity between x
u and y

u according to
their semantic correlation. As shown in Figure 6, R is designed as:

R(xu
, y

u) = Sigmoid
⇣
MLP

⇣
CA

�
Emb(f(xu)),Emb(yu)

�⌘⌘
, (6)
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𝕀(𝑦#, 𝜏). We parameterize 𝕀(. , . ) by a new reward score:
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Figure 6: Network structures of effi-
cient R and G analyzed in Table 5.

where the input data and label are first linear embedded
to the same dimension by Emb(·), and their correlations
are modeled by a cross-attention module CA(·, ·) and a
MLP(·) module, then predict the reward score through
Sigmoid function. Notice that xu is converted to last-
layer features by a pre-trained backbone model f(·), e.g.,
an image in H ⇥W resolutions will be encoded as a D-
dim feature z

u
2 RD, which is easy for the network to

capture high-level information directly related to y
l. As

shown in Figure 4(b), we ablate modules in R and find
that CA(·, ·) is the most essential component to learn
credible reward scores. Meanwhile, the backbone f(·)
is also important to provide highly embedded features,
or it will be hard and costly to learn such information by
the lightweight R. On the contrary, the number of layers
in MLP(·) has less impact on performance, as verified
in Figure 4(c). As for implementation, R uses a 2-layer
MLP(·) with D = 128 and we simply apply the inherent
teacher fT as f(·) in Eq. (6).

3.2 EFFICIENT TWO-STAGE TRAINING OF SEMIREWARD

Synchronizing with self-training paradigms, we train the rewarder R in a supervised manner with a
reward training set DR = {!(xr

i ), y
r
i }

NR

i=1, where yr is considered as the ground-truth label here. As
discussed in Sec. 2, we expect a reliable R to filter pseudo labels to ensure high label quality to train
fS . Hence, we design a two-stage training paradigm for R in Figure 7, and DR will be dynamically
constructed by DL and D̂U . View Appendix B for a detailed analysis of training processes.

Generator. To train R, we first design a generator G(xu) = y
f
2 RC to generate pseudo labels but

not participate in the training process of fS . Thus, we denote them as “fake labels”. Similar to Chen
et al. (2022a), G decouples the training of fS and R to avoid confirmation bias. Meanwhile, the fake
labels generated by G gradually change from random to accurate, which helps R steadily fit reward
scores on high-quality pseudo-label distributions. Its network is also as lightweight as R, containing
the pre-trained f followed by a sample embedding Emb(·) and a MLP(·) module in Figure 6.

Pre-training Rewarder. R and G will be trained with fixed DR = DL before T training iterations.
In the first stage, our main optimization goal is to approximate the ground truth reward scores with a
wide range of fake labels without affecting the training of fS . Thus, R does not select pseudo labels
for the student fS , and we introduce G(xr) = y

f to generate fake labels that gradually get better.
We compute losses for R and G alternatively as the auxiliary loss Laux = LR + LG :
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1
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�
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, (8)

where R and G denote forward without requiring gradients, which prevents two losses from inter-
fering with each other. In implementations, we adopt two independent optimizers for R and G for
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Figure 7: Two-stage training paradigm of SemiReward. (a) To prevent R from distorting fS , we
pre-train R and G to convergence at the early stage of SSL training with DL. (b) After T iterations,
R further learns from the DR sub-sampled from DL [ D̂U with ignorable training cost.
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not participate in the training process of fS . Thus, we denote them as “fake labels”. Similar to Chen
et al. (2022a), G decouples the training of fS and R to avoid confirmation bias. Meanwhile, the fake
labels generated by G gradually change from random to accurate, which helps R steadily fit reward
scores on high-quality pseudo-label distributions. Its network is also as lightweight as R, containing
the pre-trained f followed by a sample embedding Emb(·) and a MLP(·) module in Figure 6.

Pre-training Rewarder. R and G will be trained with fixed DR = DL before T training iterations.
In the first stage, our main optimization goal is to approximate the ground truth reward scores with a
wide range of fake labels without affecting the training of fS . Thus, R does not select pseudo labels
for the student fS , and we introduce G(xr) = y

f to generate fake labels that gradually get better.
We compute losses for R and G alternatively as the auxiliary loss Laux = LR + LG :

LR =
1

BR

BRX

i=1

`2

⇣
R
�
x
r
i ,G(x

r
i )
�
,S

�
y
r
i ,G(x

r
i )
�⌘

, (7)

LG =
1

BR

BRX

i=1

`2

⇣
R
�
x
r
i ,G(x

r
i )
�
, 1
⌘
, (8)

where R and G denote forward without requiring gradients, which prevents two losses from inter-
fering with each other. In implementations, we adopt two independent optimizers for R and G for
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(a) Stage 1: Pre-training with labeled data
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(b) Stage 2: Semi-supervised training with DR

Figure 7: Two-stage training paradigm of SemiReward. (a) To prevent R from distorting fS , we
pre-train R and G to convergence at the early stage of SSL training with DL. (b) After T iterations,
R further learns from the DR sub-sampled from DL [ D̂U with ignorable training cost.
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Figure 4. Training pipeline and network architecture.
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