

Dynamic Layer Tying for Parameter- Efficient Transformers Tamir David-Hay, Lior Wolf School of Computer Science, Tel Aviv University

Motivation

The motivation behind "Dynamic Layer Tying for Parameter-Efficient Transformers" lies in the quest to reduce the number of trainable parameters in deep transformer networks.

Pruning can be used to reduce the number of FLOPs of transformers during inference time at least by half, with little effect on accuracy (Kurtic et al., 2022; Kwon et al., 2022).

Attention heads can be removed post-training with little effect on performance (Michel et al., 2019; Voita et al., 2019).

Layers can be dropped altogether during inference (Fan et al., 2019; Sajjad et al., 2020).

Attention scores can be reused (Bhojanapalli et al., 2021).

<u>Method</u>

Our method employs Reinforcement Learning to dynamically tie transformer layers during training, significantly reducing trainable parameters while maintaining or enhancing model performance. Algorithm 1 Q-learning driven dynamic layer tying

Require: L the number of layers, K the number of training steps of \mathcal{T} , k the number of training steps between the update and evaluation of Q, γ the discount factor, and ϵ initial exploration probability 1: Initialize the primary model \mathcal{T} and the Q-network \mathcal{Q} 2: Freeze layers 1 to L - 1 in \mathcal{T} , such that only layer 0 trains at initialization. 3: Initialize $\boldsymbol{s} = \boldsymbol{a} = 0$ \triangleright An all zero vector 4: for step = 0 to K - 1 do Sample a mini-batch B from the dataset 5: Perform a training step with \mathcal{T} on B6: \triangleright Every k steps if mod(step,k) == 0 then 7: Obtain an action vector $\boldsymbol{a} = \pi(\boldsymbol{s})$ 8: ⊳ Eq. |1 Compute s' based on a9: for i = 0 to L - 1 do 10: if $s'_i \neq s_i$ then 11: 12: if $s'_i == i$ then Untie layer i of $\mathcal{T} \triangleright$ Copy its weights and update it independently of layer s_i 13: else 14: Replicate all weights of layer s'_i of \mathcal{T} to layer *i* of \mathcal{T} 15: The weights of layer *i* to layer s'_i 16: end if 17: end if 18: 19: end for 20: Sample a mini-batch B from the data-set 21: r_{step} = Compute negative PPL score based on \mathcal{T} on B $r_{predicated} = \mathcal{Q}(\boldsymbol{s}, \boldsymbol{a})$ 22: ⊳ Eq. 3 23: $r = r_{step} + \gamma * \max_{a} \mathcal{Q}(s')_{a}$ $L = MSE(r_{predicted}, r)$ 24: update Q using L25: s = s'26: $\epsilon = \max\{\epsilon * 0.95, 0.1\}$ 27: 28: end if end for

The state space is defined by a vector where each element represents the lowest-index layer whose weights are tied to the layer.

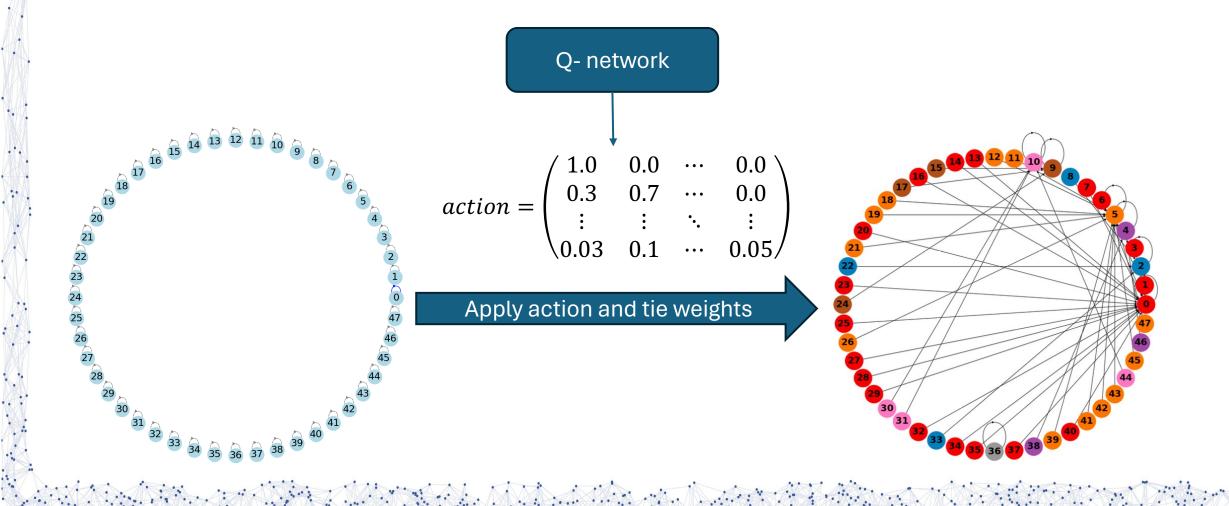
The action space is described by a vector, parallel to the state vector, where each element determines from which previous layer the weights should be copied.

.

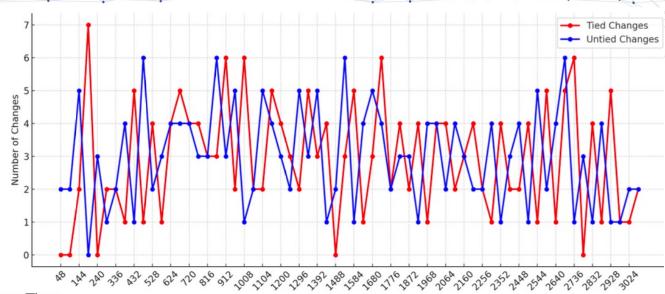
The initial state has all layers except the first one frozen.

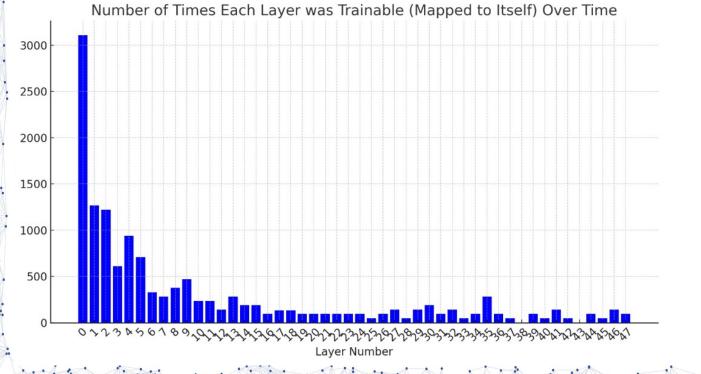
Each action represents the probability of tying a layer with a previous one using a lower triangle matrix of probabilities generated by the Q network.

A layer pointing to itself means that the layer is trainable.



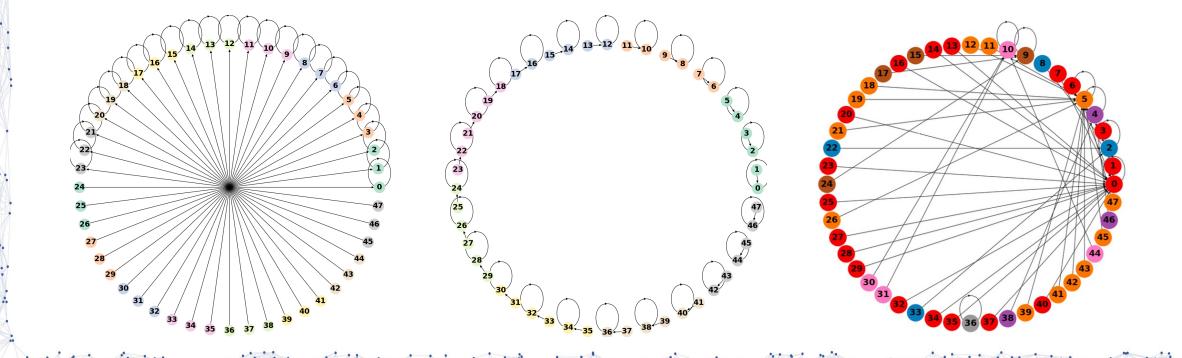
Throughout training, layers frequently changed states between being tied or untied, with every layer experiencing being trainable at different points, ensuring dynamic adaptability without diminishing frequency over time.





Experiments

we compared the full method with variations, such as training all epochs using the final architecture, applying recorded dynamics to different layers, and training without weight tying, demonstrating the critical role of the proposed dynamic architecture changes.



Results

The results show that our method achieves up to a tenfold reduction in memory consumption and maintains or improves model accuracy with at least 75% replication of transformer layers and carries over to downstream tasks as well as image classification tasks.

			Training set			Metric	Conventio	onal	Our	
	Metric	Method	Wiki-2 Wiki-103 Lambada 1-billion			SST-2 (Accuracy)	0.811	0	.799	
	Perplexity	Conventional training	53.57	22.32	94.96	88.35	Cola (Accuracy)	0.691		.691 .599
		Our method	49.37	22.35	93.84	72.35	QNLI (Accuracy) MRPC (Accuracy)	0.608 0.697		. <i>599</i> .697
	Number of trainable parameters	Conventional training Our method mean over training	1.6B	1.6B 151M	1.6B 166M	1.6B 218M	RTE (Accuracy)	0.527		.541
		Our method at end of training	264M	131M 142M	326M	203M	# trainable params	1.5B	235M	
	Number of independent layers	Conventional training	48	48	48 48 # trainable layers			48		5
		Our method mean over training Our method at end of training	g 4.395 7	2.309 6	3.547 9	4.486 10				
	Statistics	Conventional trainin	Conventional training Our method			letric		ViT	Our	
X	Peak memory	12,566.66 MB	4,514.31 ME 3,395.16 ME				ccuracy trainable params (mean))	0.999 630M	0.995 80M
1	Average memory consumpt	on 10,223.08 MB			1B	#	trainable params (end of training)		630M	139M
•							trainable layers (mean)	turinin a)	32	5.5
						#	trainable layers (end of	(raining)	32	/

