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Motivation
The motivation behind "Dynamic Layer Tying for Parameter-Efficient Transformers" lies in the
quest to reduce the number of trainable parameters in deep transformer networks.

Pruning can be used to reduce the number of FLOPs of transformers during inference time at least
by half, with little effect on accuracy (Kurtic et al., 2022; Kwon et al., 2022).

Attention heads can be removed post-training with little effect on performance (Michel et al., 2019;
Voita et al., 2019).

Layers can be dropped altogether during inference (Fan et al., 2019; Sajjad et al., 2020).

Attention scores can be reused (Bhojanapalli et al., 2021).



M th d Algorithm 1 Q-learning driven dynamic layer tying

e O Require: L the number of layers, K the number of training steps of 7, k£ the number of training .
steps between the update and evaluation of O, «y the discount factor, and ¢ initial exploration -
probability ]

Our method employs Reinforcement

Learning to dynamically tie transformer  1: Initialize the primary model 7 T and the Q-network Q
. . . e 2: Freeze layers 1 to L — 1 1in 7, such that only layer O trains at initialization.
Iayers_ durm_g trammg’ SlgnlflCantIy. 3: Initialize}.,s: a=0 > > An all zero vector *
reducing trainable parameters while 4: for step = 0 to K — 1 do
: A : 5: Sample a mini-batch B from the dataset
maintaining or enhancing model 6 Perform a training step with 7 on B |
perfO rmance. 7: if mod(step,k) == 0 then > Every k steps
8: Obtain an action vector @ = 7(s)
9: Compute s’ based on a >Eq. 1]

10: fori=0to L —1do '
11: if s # s; then
12: if s, == i then
13: Untie layer ¢ of 7 > Copy its weights and update it independently of layer s;
14: else ,
15: Replicate all weights of layer s; of 7 to layer i of 7 |
16: Tie the weights of layer i to layer s/,
17: end if
18: end if
19: end for
20: Sample a mini-batch B from the data-set
21: Tstep = Compute negative PPL score based on 7 on B )
22: Tpredicated = Q(sa CL) > Eq. B .
23: T = Tstep + 77 * max, Q(s')q A
24: L=MSFE (rmedicted, ’l")
25: update Q using L ¢
26: s=3g !
27: e = max{e x0.95,0.1}
28: end if
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The state space is defined by a vector where each element represents the lowest-index layer
whose weights are tied to the layer.

The action space is described by a vector, parallel to the state vector, where each element
determines from which previous layer the weights should be copied.

The initial state has all layers except the first one frozen.

-~ D 2N —
~ am A3 12 4D Ap
Iy 15 14 10 9 7

P 16 8
.17 7.
»~ 18 6 »~
19 5
2 fay
20 4
Fa [
21 3
Py N\
22 2
Py )
23 1
Iy M
24 0
Py Py
25 a7
’)‘\\ ’)\y
26 46
[ )
27 45
fy fa
28 44
’»—\\ 2
29 , 43
30 . )
31 41
32 7 40
33 39

Iy TSN P
34 35 36 37 38



Each action represents the probability of tying a layer with a previous one using a lower triangle
matrix of probabilities generated by the Q network.

A layer pointing to itself means that the layer is trainable.
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Throughout training, layers frequently A o
changed states between being tied or °l ]
untied, with every layer experiencing 7| ﬁ
being trainable at different points,
ensuring dynamic adaptability without 53}
diminishing frequency over time. #2| \ /
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Experiments

we compared the full method with variations, such as training all epochs using the final
architecture, applying recorded dynamics to different layers, and training without weight tying,
demonstrating the critical role of the proposed dynamic architecture changes.
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Results
The results show that our method achieves up to a tenfold reduction in memory consumption and

maintains or improves model accuracy with at least 75% replication of transformer layers and
carries over to downstream tasks as well as image classification tasks.

Training set Metric Conventional = Our
Metric Method Wiki-2 Wiki-103 Lambada 1-billion  SST-2 (Accuracy) 0.811 0.799
W Perolex Conventional training 5357 2232 9496 8835  Cola(Accuracy) 0.691 0.691
erplexity Our method 49.37 2235 93.84 7235  QNLI(Accuracy) 0.608 0.599
C ol trecind 16B 16B 6B 6B MRPC (Accuracy) 0.697 0.697
Wil . onventuona aming . . . . RTE A 0527 0541
Number of trainable parameters Our method mean over training 171M  151IM 166M  218M _( ceuracy)
Our method atend of training  264M  142M  326M 203M  # trainable params 1.5B 235M
* . Number of independent layers Conventional training 48 48 48 48 ¥ trainable fayers * >
N/ P Y Our method mean over training 4.395 2.309  3.547 4.486
Our method at end of training 7 6 9 10
Statistics Conventional training  Our method Metric Vil Our
Accuracy 0999 0.995 -
ot Peak memory . 12,566.66 MB 4,514.31 MB # trainable params (mean) 630M  SOM |
Average memory consumption 10,223.08 MB 3,395 16 MB # trainable params (end of training) 630M  139M
Kk # trainable layers (mean) 32 5.5

# trainable layers (end of training) 32 7
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