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Figure 4: Emergence of correspondence from pre-training: visualization of the decoder cross-
attention of the finetuned DEBiT-L model for example image pairs. We show attention of the last
layer averaged over heads. Top: different scenes and poses. Bottom: image pairs taken from a
single trajectory, varying distance to the goal, showcasing robustness to scale changes.

Figure 5: RPEV performance, DEBiT-L during expert episodes: pink star = goal; segments
point to the predicted goal, color encodes visibility prediction v and GT v

⇤: true negatives (TN)
(v⇤<⌧, v<⌧ ), TP (v⇤>⌧, v>⌧ ) , FP (v⇤<⌧, v>⌧ ), FN (v⇤>⌧, v<⌧ ) — rare, not seen. Pose and
visibility (and thresholds!) are used for visualization only, the policy receives a latent embedding.

out adapters performance was actually unexploitable. Non-Siamese adapters (different for obs and
goal) gained around 1p of SR compared to Siamese ones. We outperform the current SOTA method
(Krantz et al., 2023) and show that this task can also be addressed without feature matching.

Integration into a modular architecture — as a proof of concept, we integrate DEBiT into the
modular exploration method ANS (Chaplot et al., 2020b), which is composed of a high-level policy
predicting waypoints, and a low-level navigation policy. We adapted it to ImageNav by adding the
encoder b as perception module switching between (1) nav. towards the predicted goal with the local
policy or (2) exploration, otherwise, see Appendix A.5. Table 4 gives a non-comparable number,
as we did not retrain ANS and took publicly available parameters. The lower performance is also
explained by the direct usage of pose and visibility estimates, whereas the e2e trained models benefit
from the richer latent embeddings from the visual encoders. This is confirmed by an ablation study
where the e2e trained agent only receives pose and visibility, reaching only 20% SR in training.

Visualization of attention — in Figure 4 we visualize averaged attention of the last cross-attention
layer of a DEBiT-L model. Correspondence solutions naturally emerge without explicit supervision
of correspondence solutions. We show a variety of different pairs and poses in the top row, and a
single trajectory varying goal distances in the bottom row, indicating robustness to scale changes.

Visualization of RPEV performance — Figure 5 illustrates pose and visibility estimation perfor-
mance on several expert trajectories — DEBiT reliably detects the goal and provides orientations
toward it. Let’s recall that this information is passed to the policy indirectly through latent embed-
dings, the RPEV head is discarded after pre-training.

5 CONCLUSION

We have introduced pretext tasks and a dual visual encoder for ImageNav and Instance-ImageNav
navigation, which provide rich geometric information and we show that this makes solutions of
correspondence problems emerge without explicit supervision. We integrate the method into an
end-to-end trained agent, which outperforms competing methods and obtains SOTA performance
on both benchmarks. We also showcase the integration into a modular navigation pipeline. Future
work will use the encoder for visual odometry, extend pre-trained to pairs with different camera
intrinsics and/or different backgrounds, and integrate the method into a real robotics platform.
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Table 1: Image-Nav: impact of model capacity of the binocular encoder on RPEV and nav. perf.
(CroCo+RPEV, 200M steps of RL, frozen, no adapters). L=layers, H=heads, d=embedd.dim.

Variant Encoder Decoder #params Monoc % correct poses Vis-acc Nav. perf.

L H d L H d (binoc) 1m&10° 2m&20° (%) SR (%) SPL (%)
DEBiT-L (“Large”), no adapters 12 12 768 8 16 512 120M hwRN18 97.5 98.9 94.0 82.0 59.6

DEBiT-B (“Base”), no adapters 12 6 384 8 16 512 55M hwRN18 92.5 96.8 89.3 83.0 55.6
DEBiT-S (“Small”), no adapters 12 6 384 2 8 256 24M hwRN18 82.7 93.5 81.6 79.6 52.1
DEBiT-T (“Tiny”), no adapters 8 6 384 2 8 256 17M hwRN18 80.3 92.4 80.6 79.3 50.0

Table 2: ImageNav: impact of pre-training strategies: we ablate CroCo and RPEV pre-training.
All results on 100M steps of RL only, frozen, no adapters. Left: training performance curves (SR)
for DEBiT-B, best viewed in color. Right: ablated test results.

Variant Pre-train % corr. poses Vis-acc Nav. perf.

CroCo RPEV 1m&10° 2m&20° (%) SR SPL

DEBiT-L, no adapters 7 7 n/a n/a n/a 7.0 4.4
DEBiT-L, no adapters 3 7 n/a n/a n/a 60.2 33.1
DEBiT-L, no adapters 7 3 40.1 66.7 58.3 11.8 9.9
DEBiT-L, no adapters 3 3 97.5 98.9 94.0 82.0 54.8

DEBiT-B, no adapters 7 7 n/a n/a n/a 6.8 4.0
DEBiT-B, no adapters 3 7 n/a n/a n/a 65.7 37.3
DEBiT-B, no adapters 7 3 39.7 66.4 58.8 23.6 17.4
DEBiT-B, no adapters 3 3 92.5 96.8 89.3 81.2 53.0

(Majumdar et al., 2022b; 2023; Yadav et al., 2023). We also compare to the feature-matching based
method presented in (Krantz et al., 2023), which holds the current SOTA on Instance-ImageNav.

Impact of model capacity — we explore variations in model capacity distributed over the encoder
E and the decoder D of the binocular visual encoder b (the monocular part m is unchanged) and
introduce four different model sizes in Table 1: DEBiT-L (“Large”), DEBiT-B (“Base”), DEBiT-S
(“Small”) and DEBiT-T (“Tiny”), where DEBiT-L corresponds to the architecture in (Weinzaepfel
et al., 2022). Performance generally improves with more model capacity.

Impact of pre-training strategies — Table 2 gives results comparing different pre-training strate-
gies for the two largest variants, DEBiT-L and DEBIT-B. Directly training the binocular encoder b
from scratch did not lead to exploitable results, reward as a learning signal is too weak. CroCo pre-
training is essential, directly training on RPEV led to low performance. CroCo pre-training alone is
not optimal, RPEV adds a significant boost to the gain provided by self-supervised objective alone.
The curves in Table 2 (left) shows the evolution of navigation performance (SR) during training,
indicating the significant gain and head start the two pretext tasks provide.

Aligning architecture design choices with learning signals — visual encoders for end-to-end
trained solutions in the literature for ImageNav are typically based on Siamese networks, where the
inputs xt and x⇤ are encoded separately, the respective embeddings are passed to current policies.
This late fusion approach allows to train the models from weak reward signals, as the individual
encoders learn high-level representations which are compared later in the pipeline. We claim that
image comparisons of higher quality can be obtained through early fusion, where images are com-
pared close to input on patch-level. We argue that this leads to a finer visual perception, where
correspondence information is encoded in the representation in a more direct way, and provides a
more useful signal to the policy. Our experiments shown in Table 3 corroborate this claim: we
compare with a widely used Siamese architecture based on half-width ResNet-18 visual encoders
taken from (Zhu et al., 2017) and reused in (Mezghani et al., 2022). DEBiT outperforms them when
pre-trained with both pretext tasks, as CroCo pre-training allows correspondence on patch level to
emerge (see further below), which leads to accurate pose estimates. Training DEBiT from reward
alone is difficult. On the other hand, adding RPEV pre-training to the Siamese architecture is not
helpful, the architecture based on late embedding-level fusion cannot exploit this signal.

In an additional experiment we verified whether this difference is explained by the presence of a
cross-attention layer easing the computation of correspondences. We designed a hybrid architecture,
dubbed (c) in Table 3, which combines convolutional Siamese encoders, implemented as a shared
hwResNet18, with a Tiny cross-attention (CA) module with 2 layers, 4 heads and 256 dimensions.
Performance is lukewarm, it did not manage to capture the cues provided by the pretext tasks.
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Table 3: ImageNav: aligning architecture design choices with learning signals: when both are
trained from scratch on navigation reward alone, the Siamese visual encoder (Mezghani et al., 2022;
Zhu et al., 2017) performs better than our DEBiT architecture. However, DEBiT shines with self-
supervised pre-training and fine-tuning, and learning signals which enable learning the correspon-
dence problem solved by the encoder-decoder structure of the binocular stream. RPEV pre-trained
models have been added a monocular encoder. Frozen, no adapters.
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(d) DEBiT-B (Ours), no adapters No 60M 6.8 4.0
(d) DEBiT-B (Ours), no adapters CroCo+RPEV 60M 83.0 55.6

⇤ Baseline in (Mezghani et al., 2022), inspired by (Zhu et al., 2017)

Table 4: ImageNav: comparisons with prior work: we gain +12p in SR, +12p in SPL by using
RL-trained adapters of the DEBiT encoder. ANS models+weights are from (Chaplot et al., 2020b).

Method #steps SR(%) SPL(%) Pretrained weights

Siam. hwRN18 180M 10.1 9.6 None, from scratch
Siam. hwRN18 2 500M - 8.01 None, from scratch
Mem. Aug. (Mezghani et al., 2022)3 500M - 9.01 Finetuned
ZSEL (Al-Halah et al., 2022) 500M 29.21 21.61 Obs.&policy frozen, goal from scratch
ZSON (Majumdar et al., 2022a) 500M 36.91 28.01 Obs. finetuned, goal frozen (CLIP)
VC1-ViT-L (Majumdar et al., 2023) 500M 81.61 - Finetuned
OVRL (Yadav et al., 2022) 500M 54.21 27.01 Finetuned
OVRL-v2 (Yadav et al., 2023) 500M 82.01 58.71 Finetuned
ANS (Chaplot et al., 2020b) + DEBiT-L 32.0 15.0 Modular architecture + our frozen encoder
Ours (DEBiT-B), no adapters 200M 83.0 55.6 Frozen
Ours (DEBiT-L), no adapters 200M 82.0 59.6 Frozen
Ours (DEBiT-L) + adapters 200M 94.0 71.7 Frozen + adapted
1Perf. from orig. papers; 2 Mono-view ablation of baseline in Table III of (Mezghani et al., 2022);
3 Retrained in mono-view settings, see Table 1 of (Al-Halah et al., 2022)

ImageNav, comparison with prior work — Table 4 compares the proposed model with prior
work. DEBiT largely outperforms the competing methods, including the memory augmented
model (Mezghani et al., 2022), but also models on large-capacity ViTs like the “Visual Cortex”
model VC1 (Majumdar et al., 2023) and OVRL2 (Yadav et al., 2023). Both have been pre-trained
with masked image encoding, but in a monocular frame-by-frame basis and perform late fusion of
observation and goal features, which we argue does not ease learning geometric comparisons.

Adapters — adding adapters to DEBIT gains additional 12p of success rate and 12p of SPL, as can
be seen in Table 4. For ImageNav, it is unlikely that this is explained by improvement of the pose
estimation performance through RL finetuning. We conjecture, that the adapters allow to pass richer
information through the embedding eb

t
from the DEBiT to the policy.

Table 5: Instance-ImageNav: adapters enable speci-
fying goal images with different camera intrinsics and
heights compared to the obs. Performance reported on
val, max/avg over the last 5 checkpoints.
Method #steps — SR (%) — — SPL (%) —

max avg max avg

(Krantz et al., 2022) 3500M 5.5 n/a 2.3 n/a
(Krantz et al., 2023) n/a 56.1 n/a 23.3 n/a
Ours(DEBiT-L)+adapters 200M 61.1 59.3 33.5 32.4

The Instance-ImageNav task — In Ta-
ble 5 we compare with the state-of-
the-art in the Instance-ImageNav task,
where the goal can be taken with ar-
bitrary camera intrinsics (in particular
FOV) and from any camera height, not
necessarily the height it is installed on
the agent. We trained the agent for a to-
tal of 200M steps, 100M of which were
done one the ImageNav task followed by
100M on Instance-ImageNav. As CroCo and RPEV pre-training have been done in ImageNav set-
tings (equal intrinsics), adapting DEBiT to this OOD situation was a key design choice, and with-
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Figure 4: Emergence of correspondence from pre-training: visualization of the decoder cross-
attention of the finetuned DEBiT-L model for example image pairs. We show attention of the last
layer averaged over heads. Top: different scenes and poses. Bottom: image pairs taken from a
single trajectory, varying distance to the goal, showcasing robustness to scale changes.

Figure 5: RPEV performance, DEBiT-L during expert episodes: pink star = goal; segments
point to the predicted goal, color encodes visibility prediction v and GT v

⇤: true negatives (TN)
(v⇤<⌧, v<⌧ ), TP (v⇤>⌧, v>⌧ ) , FP (v⇤<⌧, v>⌧ ), FN (v⇤>⌧, v<⌧ ) — rare, not seen. Pose and
visibility (and thresholds!) are used for visualization only, the policy receives a latent embedding.

out adapters performance was actually unexploitable. Non-Siamese adapters (different for obs and
goal) gained around 1p of SR compared to Siamese ones. We outperform the current SOTA method
(Krantz et al., 2023) and show that this task can also be addressed without feature matching.

Integration into a modular architecture — as a proof of concept, we integrate DEBiT into the
modular exploration method ANS (Chaplot et al., 2020b), which is composed of a high-level policy
predicting waypoints, and a low-level navigation policy. We adapted it to ImageNav by adding the
encoder b as perception module switching between (1) nav. towards the predicted goal with the local
policy or (2) exploration, otherwise, see Appendix A.5. Table 4 gives a non-comparable number,
as we did not retrain ANS and took publicly available parameters. The lower performance is also
explained by the direct usage of pose and visibility estimates, whereas the e2e trained models benefit
from the richer latent embeddings from the visual encoders. This is confirmed by an ablation study
where the e2e trained agent only receives pose and visibility, reaching only 20% SR in training.

Visualization of attention — in Figure 4 we visualize averaged attention of the last cross-attention
layer of a DEBiT-L model. Correspondence solutions naturally emerge without explicit supervision
of correspondence solutions. We show a variety of different pairs and poses in the top row, and a
single trajectory varying goal distances in the bottom row, indicating robustness to scale changes.

Visualization of RPEV performance — Figure 5 illustrates pose and visibility estimation perfor-
mance on several expert trajectories — DEBiT reliably detects the goal and provides orientations
toward it. Let’s recall that this information is passed to the policy indirectly through latent embed-
dings, the RPEV head is discarded after pre-training.

5 CONCLUSION

We have introduced pretext tasks and a dual visual encoder for ImageNav and Instance-ImageNav
navigation, which provide rich geometric information and we show that this makes solutions of
correspondence problems emerge without explicit supervision. We integrate the method into an
end-to-end trained agent, which outperforms competing methods and obtains SOTA performance
on both benchmarks. We also showcase the integration into a modular navigation pipeline. Future
work will use the encoder for visual odometry, extend pre-trained to pairs with different camera
intrinsics and/or different backgrounds, and integrate the method into a real robotics platform.

9

Published as a conference paper at ICLR 2024
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out adapters performance was actually unexploitable. Non-Siamese adapters (different for obs and
goal) gained around 1p of SR compared to Siamese ones. We outperform the current SOTA method
(Krantz et al., 2023) and show that this task can also be addressed without feature matching.

Integration into a modular architecture — as a proof of concept, we integrate DEBiT into the
modular exploration method ANS (Chaplot et al., 2020b), which is composed of a high-level policy
predicting waypoints, and a low-level navigation policy. We adapted it to ImageNav by adding the
encoder b as perception module switching between (1) nav. towards the predicted goal with the local
policy or (2) exploration, otherwise, see Appendix A.5. Table 4 gives a non-comparable number,
as we did not retrain ANS and took publicly available parameters. The lower performance is also
explained by the direct usage of pose and visibility estimates, whereas the e2e trained models benefit
from the richer latent embeddings from the visual encoders. This is confirmed by an ablation study
where the e2e trained agent only receives pose and visibility, reaching only 20% SR in training.

Visualization of attention — in Figure 4 we visualize averaged attention of the last cross-attention
layer of a DEBiT-L model. Correspondence solutions naturally emerge without explicit supervision
of correspondence solutions. We show a variety of different pairs and poses in the top row, and a
single trajectory varying goal distances in the bottom row, indicating robustness to scale changes.

Visualization of RPEV performance — Figure 5 illustrates pose and visibility estimation perfor-
mance on several expert trajectories — DEBiT reliably detects the goal and provides orientations
toward it. Let’s recall that this information is passed to the policy indirectly through latent embed-
dings, the RPEV head is discarded after pre-training.

5 CONCLUSION

We have introduced pretext tasks and a dual visual encoder for ImageNav and Instance-ImageNav
navigation, which provide rich geometric information and we show that this makes solutions of
correspondence problems emerge without explicit supervision. We integrate the method into an
end-to-end trained agent, which outperforms competing methods and obtains SOTA performance
on both benchmarks. We also showcase the integration into a modular navigation pipeline. Future
work will use the encoder for visual odometry, extend pre-trained to pairs with different camera
intrinsics and/or different backgrounds, and integrate the method into a real robotics platform.
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Table 3: ImageNav: aligning architecture design choices with learning signals: when both are
trained from scratch on navigation reward alone, the Siamese visual encoder (Mezghani et al., 2022;
Zhu et al., 2017) performs better than our DEBiT architecture. However, DEBiT shines with self-
supervised pre-training and fine-tuning, and learning signals which enable learning the correspon-
dence problem solved by the encoder-decoder structure of the binocular stream. RPEV pre-trained
models have been added a monocular encoder. Frozen, no adapters.
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Visual encoder Pre-train #parms SR SPL

(a) Siamese hwRN18⇤ No 4.1M 10.1 9.6
(b) Siamese hwRN18⇤+m RPEV 8.3M 8.0 7.7
(c) hwRN18+Cross-Att+m No 10M 7.4 4.7
(c) hwRN18+Cross-Att+m RPEV 10M 7.4 7.2
(d) DEBiT-B (Ours), no adapters No 60M 6.8 4.0
(d) DEBiT-B (Ours), no adapters CroCo+RPEV 60M 83.0 55.6

⇤ Baseline in (Mezghani et al., 2022), inspired by (Zhu et al., 2017)

Table 4: ImageNav: comparisons with prior work: we gain +12p in SR, +12p in SPL by using
RL-trained adapters of the DEBiT encoder. ANS models+weights are from (Chaplot et al., 2020b).

Method #steps SR(%) SPL(%) Pretrained weights

Siam. hwRN18 180M 10.1 9.6 None, from scratch
Siam. hwRN18 2 500M - 8.01 None, from scratch
Mem. Aug. (Mezghani et al., 2022)3 500M - 9.01 Finetuned
ZSEL (Al-Halah et al., 2022) 500M 29.21 21.61 Obs.&policy frozen, goal from scratch
ZSON (Majumdar et al., 2022a) 500M 36.91 28.01 Obs. finetuned, goal frozen (CLIP)
VC1-ViT-L (Majumdar et al., 2023) 500M 81.61 - Finetuned
OVRL (Yadav et al., 2022) 500M 54.21 27.01 Finetuned
OVRL-v2 (Yadav et al., 2023) 500M 82.01 58.71 Finetuned
ANS (Chaplot et al., 2020b) + DEBiT-L 32.0 15.0 Modular architecture + our frozen encoder
Ours (DEBiT-B), no adapters 200M 83.0 55.6 Frozen
Ours (DEBiT-L), no adapters 200M 82.0 59.6 Frozen
Ours (DEBiT-L) + adapters 200M 94.0 71.7 Frozen + adapted
1Perf. from orig. papers; 2 Mono-view ablation of baseline in Table III of (Mezghani et al., 2022);
3 Retrained in mono-view settings, see Table 1 of (Al-Halah et al., 2022)

ImageNav, comparison with prior work — Table 4 compares the proposed model with prior
work. DEBiT largely outperforms the competing methods, including the memory augmented
model (Mezghani et al., 2022), but also models on large-capacity ViTs like the “Visual Cortex”
model VC1 (Majumdar et al., 2023) and OVRL2 (Yadav et al., 2023). Both have been pre-trained
with masked image encoding, but in a monocular frame-by-frame basis and perform late fusion of
observation and goal features, which we argue does not ease learning geometric comparisons.

Adapters — adding adapters to DEBIT gains additional 12p of success rate and 12p of SPL, as can
be seen in Table 4. For ImageNav, it is unlikely that this is explained by improvement of the pose
estimation performance through RL finetuning. We conjecture, that the adapters allow to pass richer
information through the embedding eb

t
from the DEBiT to the policy.

Table 5: Instance-ImageNav: adapters enable speci-
fying goal images with different camera intrinsics and
heights compared to the obs. Performance reported on
val, max/avg over the last 5 checkpoints.
Method #steps — SR (%) — — SPL (%) —

max avg max avg

(Krantz et al., 2022) 3500M 5.5 n/a 2.3 n/a
(Krantz et al., 2023) n/a 56.1 n/a 23.3 n/a
Ours(DEBiT-L)+adapters 200M 61.1 59.3 33.5 32.4

The Instance-ImageNav task — In Ta-
ble 5 we compare with the state-of-
the-art in the Instance-ImageNav task,
where the goal can be taken with ar-
bitrary camera intrinsics (in particular
FOV) and from any camera height, not
necessarily the height it is installed on
the agent. We trained the agent for a to-
tal of 200M steps, 100M of which were
done one the ImageNav task followed by
100M on Instance-ImageNav. As CroCo and RPEV pre-training have been done in ImageNav set-
tings (equal intrinsics), adapting DEBiT to this OOD situation was a key design choice, and with-
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