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Background

 Generative AI on Images Generative AI on 3D Graphs



Central Question

 Generative AI on 3D GraphsIn what (latent) space should we learn the 
distribution of graphs with neural networks?

● Original space: Topology⨂Geometry;

● Symmetry constraint: Data identities are 
invariant to certain transformations;

● High dimensionality: Data dimensionality 
depends on graph size;

● Low-dimensional manifold: Data are 
supposed to distribute in the LD manifold.



Answer: What justifies a “good” space for graph generative models?

 ● We focus on diffusion generative model.
● Assuming there are forward and reverse mappings between the original 3D 

graph space and a latent space;
● The diffusion model is trained on the latent space to capture distribution, then:



Answer: How to construct a qualified latent space for graph diffusion?

 ● We develop the framework termed latent 3D graph diffusion.

● Cascaded auto-encoder for 3D graphs:



Answer: How to regularize the latent space to introduce domain prior?

 ● We develop the framework termed latent 3D graph diffusion.

● Graph self-supervised learning regularized auto-encoding:

- Graph contrastive learning (GraphCL, NeurIPS’20).



Answer: How to extend the framework to conditional generation?

 ● Equivariance constraint: When condition is a geometric object.

● 1. In/Equi-variant representations for condition inputs;

● 3. Equivariant decoding to reconstruct 3D graphs.
● 2. Invariant distribution modeling of latent embeddings;



Experiments on Unconditional Generation

 



Experiments on Conditional Generation

 



Thank You!
 https://yyou1996.github.io/

https://yyou1996.github.io/

