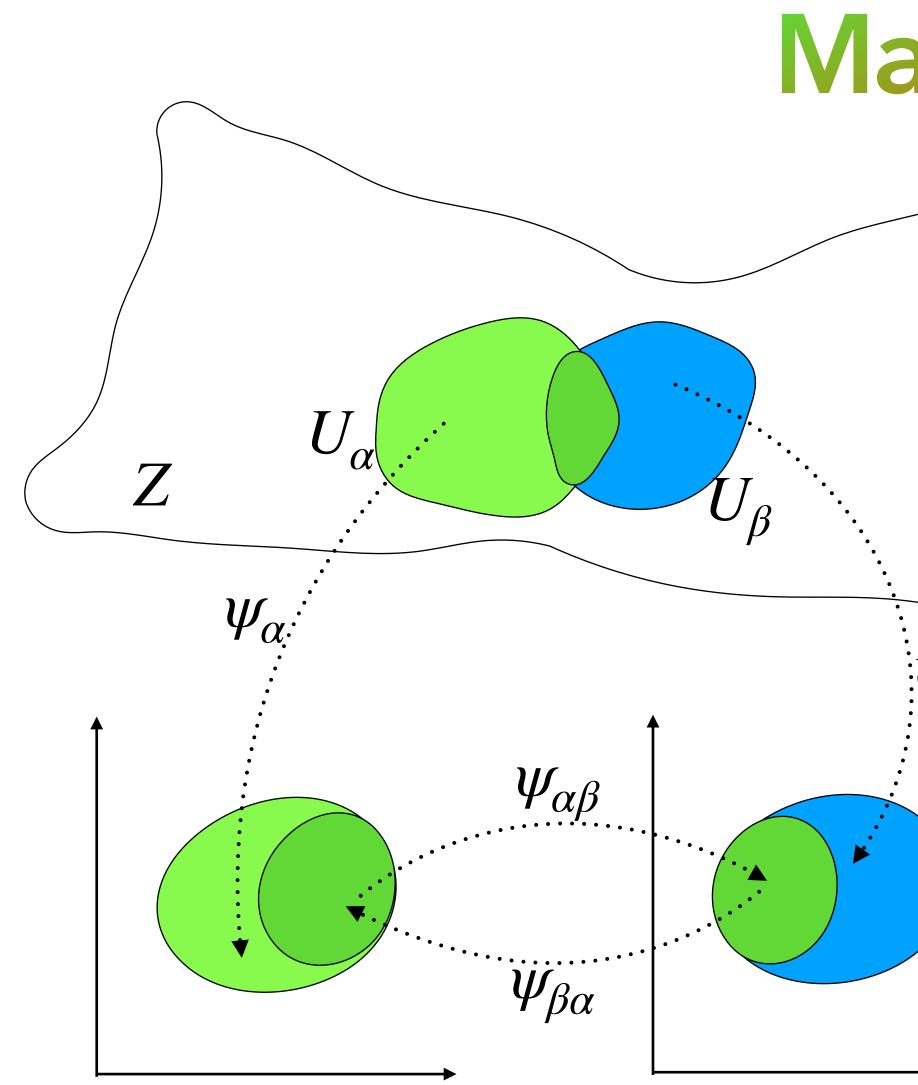
# State Representation Learning Using an Unbalanced Atlas

Li Meng, Morten Goodwin, Anis Yazidi, Paal Engelstad

# State Representation Learning (SRL)

- Reinforcement Learning (RL).
- Self-supervised learning (SSL).
- Learn representations from (unlabelled) data collected in RL.



A manifold can be learned by finding an atlas that accurately describes the local structure in each chart.

# Manifold

A manifold Z embedded in a higher dimension. Two domains are denoted by  $U_{\alpha}$ and  $U_{\beta}$  in Z.  $\psi_{\alpha}$  and  $\psi_{\beta}$  are the corresponding charts that map them to a lower dimensional Euclidean space.



# Unbalanced Atlas (UA)

- An atlas is a collection of the charts that together cover the entire manifold.
- Membership probability distribution is deliberately trained to deviate significantly from uniformity.

on

## Unbalanced Atlas (UA)

# • Output(x) = $\sum q_i(f(x))\mathcal{I}(\psi_i(f(x)))$

inference time.

## • Output(x) = $\mathscr{I}(\psi_i(f(x)))$ , where $i = \operatorname{argmax}_i q_i(f(x))$ at

# Deep InfoMax with UA

 $\mathscr{L}_{GL} = \sum_{m=1}^{M} \sum_{n=1}^{N} -\log \frac{\exp(g_{m,n}(x_t, x_{t+1}))}{\sum_{x_{t^*} \in X_{next}} \exp(g_{m,n}(x_t, x_{t^*}))}$  $\mathscr{L}_{LL} = \sum_{m=1}^{M} \sum_{n=1}^{N} -\log \frac{\exp(h_{m,n}(x_t, x_{t+1}))}{\sum_{x_{t^*} \in X_{next}} \exp(h_{m,n}(x_t, x_{t^*}))}$  $-\frac{1}{2}\sum_{i=1}^{n}\left((q_{i}(f(x_{t}))-\frac{1}{n})^{2}+(q_{i}(f(x_{t+1}))-\frac{1}{n})^{2}\right)$ 



- 19 games of the AtariARI benchmark.
- 5 categories of state variables: agent, small object, other localizations, miscellaneous, and score/clock/ lives/display.
- Evaluate the probe accuracy and F1 scores on the downstream linear probing tasks.

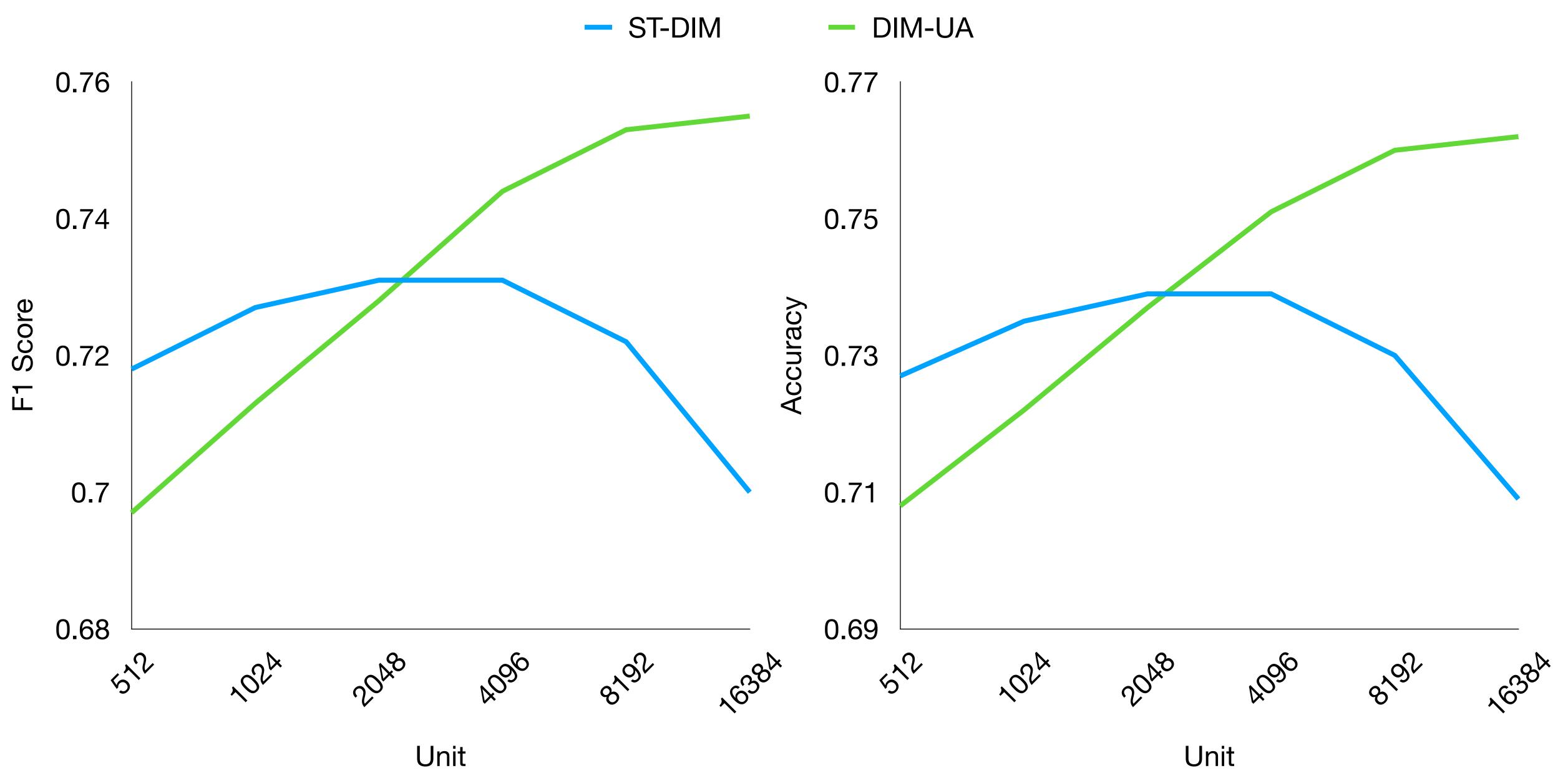
### Experiments

#### Probe F1 scores of each game averaged across categories

| Game              | VAE  | CPC  |
|-------------------|------|------|
| Asteroids         | 0.36 | 0.42 |
| Bowling           | 0.50 | 0.90 |
| Boxing            | 0.20 | 0.29 |
| Breakout          | 0.57 | 0.74 |
| Demon Attack      | 0.26 | 0.57 |
| Freeway           | 0.01 | 0.47 |
| Frostbite         | 0.51 | 0.76 |
| Hero              | 0.69 | 0.90 |
| Montezuma Revenge | 0.38 | 0.75 |
| Ms Pacman         | 0.56 | 0.65 |
| Pitfall           | 0.35 | 0.46 |
| Pong              | 0.09 | 0.71 |
| Private Eye       | 0.71 | 0.81 |
| Qbert             | 0.49 | 0.65 |
| Seaquest          | 0.56 | 0.66 |
| Space Invaders    | 0.52 | 0.54 |
| Tennis            | 0.29 | 0.60 |
| Venture           | 0.38 | 0.51 |
| Video Pinball     | 0.45 | 0.58 |
| Mean              | 0.41 | 0.63 |
|                   |      |      |

| ST-DIM | ST-DIM*          | DIM-UA                    |
|--------|------------------|---------------------------|
| 0.49   | $0.48\pm0.005$   | $0.5 \pm 0.007$           |
| 0.96   | $0.96 \pm 0.021$ | $\textbf{0.96} \pm 0.018$ |
| 0.58   | $0.61\pm0.008$   | $0.64 \pm 0.007$          |
| 0.88   | $0.88\pm0.02$    | <b>0.9</b> ± 0.016        |
| 0.69   | $0.71\pm0.01$    | $\textbf{0.74} \pm 0.012$ |
| 0.81   | $0.3\pm0.355$    | $0.86 \pm 0.02$           |
| 0.75   | $0.73\pm0.005$   | $0.75\pm0.004$            |
| 0.93   | $0.93\pm0.008$   | $\textbf{0.94} \pm 0.004$ |
| 0.78   | $0.81\pm0.016$   | $\textbf{0.84} \pm 0.014$ |
| 0.72   | $0.74\pm0.017$   | $0.76 \pm 0.011$          |
| 0.60   | $0.69\pm0.031$   | $\textbf{0.73} \pm 0.029$ |
| 0.81   | $0.78\pm0.015$   | $0.85 \pm 0.004$          |
| 0.91   | $0.91\pm0.009$   | $\textbf{0.93} \pm 0.009$ |
| 0.73   | $0.78\pm0.026$   | $0.79 \pm 0.02$           |
| 0.67   | $0.68\pm0.007$   | $0.69 \pm 0.007$          |
| 0.57   | $0.59\pm0.007$   | $\textbf{0.62} \pm 0.013$ |
| 0.60   | $0.57\pm0.018$   | $\textbf{0.64} \pm 0.025$ |
| 0.58   | $0.57\pm0.014$   | $0.58 \pm 0.01$           |
| 0.61   | $0.6\pm0.031$    | $\textbf{0.62} \pm 0.023$ |
| 0.72   | $0.7\pm0.033$    | $0.75 \pm 0.013$          |
|        |                  |                           |





DIM-UA continues to improve as the total number of units grows, whereas the performance of ST-DIM drops at the same time.

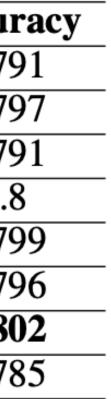
# Linear evaluation accuracy on CIFAR10

| Method    | Head | Dimension           |                     |                 |
|-----------|------|---------------------|---------------------|-----------------|
|           |      | 256                 | 512                 | 1024            |
| SimCLR    | -    | $0.881 \pm 0.002$   | $0.883\pm0.002$     | $0.881\pm0.003$ |
| MSimCLR   | 2    | $0.877\pm0.002$     | $0.878 \pm 0.001$   | $0.866\pm0.003$ |
| MSimCLR   | 4    | $0.873 \pm 0.001$   | $0.873 \pm 0.001$   | $0.861\pm0.002$ |
| MSimCLR   | 8    | $0.864 \pm 0.001$   | $0.859 \pm 0.005$   | $0.857\pm0.002$ |
| SimCLR-UA | 2    | $0.882\pm0.001$     | $0.884 \pm 0.001$   | $0.885\pm0.001$ |
| SimCLR-UA | 4    | $0.885\pm0.001$     | $0.884 \pm < 0.001$ | $0.88\pm0.001$  |
| SimCLR-UA | 8    | $0.882 \pm < 0.001$ | $0.886 \pm 0.002$   | $0.876\pm0.005$ |

Suggested Improvement:  $\tau$  to regulate the  $\mathscr{L}_Q$  loss, could be set smaller or set to 0 initially and gradually increased over time.

# Changing $\tau$

| au   | Linear scaling | Accur |
|------|----------------|-------|
| 0.2  |                | 0.79  |
| 0.2  | $\checkmark$   | 0.79  |
| 0.1  |                | 0.79  |
| 0.1  | $\checkmark$   | 0.8   |
| 0.05 |                | 0.79  |
| 0.05 | $\checkmark$   | 0.79  |
| 0.02 |                | 0.80  |
| 0.02 | $\checkmark$   | 0.78  |
|      |                |       |





- and SimCLR.
- UA also exhibits the potential of modeling a manifold using further higher dimensions.
- Future research may focus on representing a manifold using UA more efficiently.



### • UA helps improve the performance of both ST-DIM