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Continuous glucose monitors

Figure: Sample of glucose curves captured by the Dexcom G4 Continuous Glucose
Monitoring (CGM) system, with dates de-identified for privacy [5].
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Problem

Table: Summary of the glucose prediction models by dataset and model type.

Type Diabetes # of datasets # of deep # of shallow # of Physiological

Open Type 1 9 13 3 2
Simulation Type 1 12 3 3 6
Proprietary Mixed 22 7 8 7

Limitations:

1 Lack of Benchmarks: few open datasets, no tasks, no pre-processing tools;

2 Open-Source Shortage: 38 out of 45 surveyed methods released code;

3 Narrow Focus: exclusion of Type 2 diabetes from the datasets.
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Our approach: data

Table: Proposed suite of open datasets.

Dataset Diabetes CGM # of Subjects Age Sex (M / F)

Overall Overall Raw Processed Raw Processed Raw Processed

Broll [1] Type 2 Dexcom G4 5 5 NA NA NA NA
Colas [2] Mixed MiniMed iPro 208 201 59 59 103 / 104 100 / 100
Dubosson [3] Type 1 MiniMed iPro2 9 7 NA NA 6 / 3 NA
Hall [4] Mixed Dexcom G4 57 56 48 48 25 / 32 NA
Weinstock [5] Type 1 Dexcom G4 200 192 68 NA 106 / 94 101 / 91
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Our approach: pre-processing and tasks

Systematic pre-processing across datasets:

1 Interpolation and Segmentation: linear interpolation or segment division.

2 Covariates Scaling and Encoding: scaling and label encoding.

3 Data Splitting: chronologically ordered + out-of-distribution set.

To create a fair comparison and highlight main difficulties in CGM prediction,we
create the following task setup:

1 In-distribution fit: for patients in training data;

2 Out-distribution fit: for new patients (cold start);

3 Inclusion of covariates: support for covariates.
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Results

Figure: Model forecasts on Weinstock [5] dataset.
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In-distribution performance

Table: In-distribution performance.

Accuracy
Broll Colas Dubosson Hall Weinstock

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA 10.53 8.67 5.80 4.80 13.53 11.06 8.63 7.34 13.40 11.25
Linear 11.68 9.71 5.26 4.35 12.07 9.97 7.38 6.33 13.60 11.46

Latent ODE 14.37 12.32 6.28 5.37 20.14 17.88 7.13 6.11 13.54 11.45
Transformer 15.12 13.20 6.47 5.65 16.62 14.04 7.89 6.78 13.22 11.22

Uncertainty Lik. Cal. Lik. Cal. Lik. Cal. Lik. Cal. Lik. Cal.

Gluformer -2.11 0.05 -1.07 0.14 -2.15 0.06 -1.56 0.05 -2.50 0.08
TFT – 0.16 – 0.07 – 0.23 – 0.07 – 0.07
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Out-of-distribution performance

Table: with- vs. without-covariates, performance increase and decrease shown.

Accuracy
Broll Colas Dubosson Hall Weinstock

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Linear -14.82% -13.34% +5.54% +5.75% +2.84% +0.61% +6.17% +5.09% -1.54% -1.08%
Transformer -15.14% -14.64% +30.31% +37.56% +64.99% +73.82% -5.06% -5.4% +9.33% +12.41%

Uncertainty Lik. Cal. Lik. Cal. Lik. Cal. Lik. Cal. Lik. Cal.

TFT – +94.6% – +114.61% – +7.57% – +16.84% – -21.55%
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Key takeaways

ARI LIN XGB TRA NHI TFT GLU LAT
Models

(a) Generalization
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(b) Error by population
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(c) Daytime vs. nighttime error
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Figure: Analysis of errors by: (a) OD versus ID, (b) population diabetic type (healthy
→ Type 2 → Type 1), (c) daytime (9:00AM to 9:00PM) versus nighttime (9:00PM to
9:00AM).
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Key takeaways cont.

Key takeaways:
1 Model Performance Variation Factors:

1 Dataset Size: deep learning models excel on larger datasets.
2 Patient Composition: healthy subjects being easier to predict than those with

diabetes.
3 Time of Day: daytime predictions are more challenging.

2 Model Generalizability:
1 Deep learning models generally show better generalization.
2 Performance typically drops on out-of-distribution (OD) data.

3 Impact of Covariates:
1 Integrating covariates is non-trivial, and currently no model is able to take

full advantage of covariates.
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Thank You!
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