GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks

Renat Sergazinov¹, Elizabeth Chun¹, Valeriya Rogovchenko¹, Nathaniel Fernandes², Nicholas Kasman², Irina Gaynanova¹

¹Department of Statistics, ²Department of Electrical and Computer Engineering Texas A&M University

March 25, 2024

Continuous glucose monitors

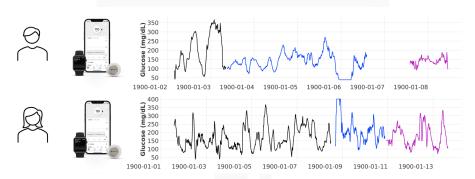


Figure: Sample of glucose curves captured by the Dexcom G4 Continuous Glucose Monitoring (CGM) system, with dates de-identified for privacy [5].

Problem

Table: Summary of the glucose prediction models by dataset and model type.

Туре	Diabetes	# of datasets	# of deep	# of shallow	# of Physiological	
Open	Type 1	9	13	3	2	
Simulation	Type 1	12	3	3	6	
Proprietary	Mixed	22	7	8	7	

Limitations:

- **Q** Lack of Benchmarks: few open datasets, no tasks, no pre-processing tools;
- Open-Source Shortage: 38 out of 45 surveyed methods released code;
- **3** Narrow Focus: exclusion of Type 2 diabetes from the datasets.

Our approach: data

Table: Proposed suite of open datasets.

Dataset	Diabetes	CGM	# of Subjects		Age		Sex (M / F)	
	Overall	Overall	Raw	Processed	Raw	Processed	Raw	Processed
Broll [1]	Type 2	Dexcom G4	5	5	NA	NA	NA	NA
Colas [2]	Mixed	MiniMed iPro	208	201	59	59	103 / 104	100 / 100
Dubosson [3]	Type 1	MiniMed iPro2	9	7	NA	NA	6/3	NA
Hall [4]	Mixed	Dexcom G4	57	56	48	48	25 / 32	NA
Weinstock [5]	Type 1	Dexcom G4	200	192	68	NA	106 / 94	101 / 91

Our approach: pre-processing and tasks

Systematic pre-processing across datasets:

- **9** Interpolation and Segmentation: linear interpolation or segment division.
- Ovariates Scaling and Encoding: scaling and label encoding.
- **③** Data Splitting: chronologically ordered + out-of-distribution set.

To create a fair comparison and highlight main difficulties in CGM prediction,we create the following **task setup**:

- In-distribution fit: for patients in training data;
- Out-distribution fit: for new patients (cold start);
- **Inclusion of covariates:** support for covariates.

Results

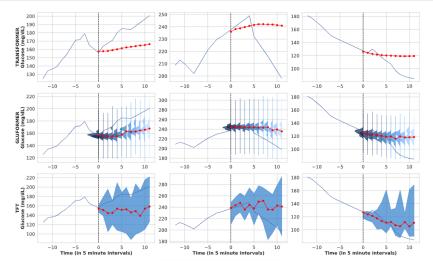


Figure: Model forecasts on Weinstock [5] dataset.

In-distribution performance

Table: In-distribution performance.

Accuracy	Broll		Colas		Dubosson		Hall		Weinstock	
	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE
ARIMA	10.53	8.67	5.80	4.80	13.53	11.06	8.63	7.34	13.40	11.25
Linear	11.68	9.71	5.26	4.35	12.07	9.97	7.38	6.33	13.60	11.46
Latent ODE	14.37	12.32	6.28	5.37	20.14	17.88	7.13	6.11	13.54	11.45
Transformer	15.12	13.20	6.47	5.65	16.62	14.04	7.89	6.78	13.22	11.22
Uncertainty	Lik.	Cal.	Lik.	Cal.	Lik.	Cal.	Lik.	Cal.	Lik.	Cal.
Gluformer	-2.11	0.05	-1.07	0.14	-2.15	0.06	-1.56	0.05	-2.50	0.08
TFT	-	0.16	-	0.07	-	0.23	-	0.07	-	0.07

Out-of-distribution performance

Table: with- vs. without-covariates, performance increase and decrease shown.

Accuracy	Broll		Colas		Dubosson		Hall		Weinstock	
	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE
Linear Transformer	-14.82% -15.14%	-13.34% -14.64%	+5.54% +30.31%	+5.75% +37.56%	+2.84% +64.99%	+0.61% +73.82%	+6.17% -5.06%	+5.09% -5.4%	-1.54% +9.33%	-1.08% +12.41%
Uncertainty	Lik.	Cal.	Lik.	Cal.	Lik.	Cal.	Lik.	Cal.	Lik.	Cal.
TFT	-	+94.6%	-	+114.61%	-	+7.57%	-	+16.84%	-	-21.55%

Key takeaways

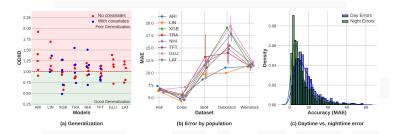


Figure: Analysis of errors by: (a) OD versus ID, (b) population diabetic type (healthy \rightarrow Type 2 \rightarrow Type 1), (c) daytime (9:00AM to 9:00PM) versus nighttime (9:00PM to 9:00AM).

Key takeaways cont.

Key takeaways:

- Model Performance Variation Factors:
 - Dataset Size: deep learning models excel on larger datasets.
 - Patient Composition: healthy subjects being easier to predict than those with diabetes.
 - 3 Time of Day: daytime predictions are more challenging.
- Odel Generalizability:
 - Deep learning models generally show better generalization.
 - Performance typically drops on out-of-distribution (OD) data.
- Impact of Covariates:
 - Integrating covariates is non-trivial, and currently no model is able to take full advantage of covariates.

References

- S. Broll, J. Urbanek, D. Buchanan, E. Chun, J. Muschelli, N. M. Punjabi, and I. Gaynanova. Interpreting blood glucose data with r package iglu. *PloS one*, 16(4):e0248560, 2021.
- [2] A. Colás, L. Vigil, B. Vargas, D. Cuesta-Frau, and M. Varela. Detrended fluctuation analysis in the prediction of type 2 diabetes mellitus in patients at risk: Model optimization and comparison with other metrics. *PloS one*, 14(12):e0225817, 2019.
- [3] F. Dubosson, J.-E. Ranvier, S. Bromuri, J.-P. Calbimonte, J. Ruiz, and M. Schumacher. The open d1namo dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management. *Informatics in Medicine Unlocked*, 13:92–100, 2018.
- [4] H. Hall, D. Perelman, A. Breschi, P. Limcaoco, R. Kellogg, T. McLaughlin, and M. Snyder. Glucotypes reveal new patterns of glucose dysregulation. *PLoS biology*, 16(7):e2005143, 2018.
- [5] R. S. Weinstock, S. N. DuBose, R. M. Bergenstal, N. S. Chaytor, C. Peterson, B. A. Olson, M. N. Munshi, A. J. Perrin, K. M. Miller, R. W. Beck, et al. Risk factors associated with severe hypoglycemia in older adults with type 1 diabetes. *Diabetes Care*, 39(4):603–610, 2016.

